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Abstract

There has been considerable discussion of the pros�cons of recombination and
mutation operators in the context of Holland�s schema theory� In this paper we
de
ne a common framework for extending and relating previous �disruption� and
�construction� analyses for both recombination and mutation� This results in
several insights into the properties of recombination and mutation� including a
No Free Lunch theorem for recombination operators as well as the lack of such a
theorem for mutation�

� Introduction

The motivation for the original schema analysis of Holland ���	�� was to compute the
expected number of instances of hyperplanes at time t��� given their number at time t� To
use the notation of Goldberg ����	�� let mt�H� be the number of individuals in hyperplane
H at time t� Then let ft�H� be the observed average 
tness of the hyperplane at time t
and let �ft be the observed average 
tness of the population at time t� Then the expected

number of individuals in H at time t� � is given by the schema theorem�



E�mt���H�� � mt�H�
ft�H�

�ft
Psurvival�H�

where Psurvival�H� is the probability that the hyperplane will not be disrupted by either

mutation or recombination �i�e�� it survives�� The inequality refers to the fact that not
only may a hyperplane H survive� it also may be constructed from other hyperplanes� See
Holland ���	�� or Goldberg ����	� for further discussions of this equation�

In order to improve this result to a precise equality� detailed aspects of the makeup of the
entire population must be modeled �Goldberg ����� Whitley ����� Vose ������ resulting in
exact but di�cult to analyze characterizations of GA behavior� In this paper we extend
earlier work in which a less precise but useful characterization of population makeup is
adopted� resulting in more tractable models of GA behavior �Spears and De Jong �����
De Jong and Spears ������ This allows us to de
ne a framework for extending and relating
previous �disruption� and �construction� analyses for both recombination and mutation�
This results in several insights into the properties of recombination and mutation� including
a No Free Lunch theorem �Wolpert ����� Sha�er ����� Rao� Gordon� and Spears �����
Culberson ����� English ���	� Wolpert and Macready ���	� for recombination operators as
well as the lack of such a theorem for mutation�

� Framework

The schema theorem articulates how the expected makeup of the next generation E�mt��� is
a function of the current generationmt� selection� and the reproductive operators� If cloning
is the only reproductive operator� E�mt��� is completely determined bymt and selection� Of
interest then is characterizing the perturbation e�ects due to reproductive operators such
as recombination and mutation� Following the standard schema analysis� we focus on a
particular kth order hyperplane Hk and ask how recombination and mutation perturb the
expected number of o�spring in Hk in the next generation�

We do so in the following manner� First� to allow a direct comparison of the e�ects of
recombination and mutation� we treat them both as reproductive operators that take two
parents as input and produce two children as output� In the case of mutation� this is
equivalent to two independent applications of the standard one�parent mutation operator�
but has the advantage that it allows us to compare the expected number of o�spring residing
in Hk as a result of a single application of either operator�

More formally� let Bk be a random variable describing the number of o�spring residing in
Hk as a result of a single application of any two�parent reproductive operator� Then the
expected number of o�spring in Hk can be computed as follows�

E�Bk� �
X

b�f�����g

b� P �Bk � b� � P �Bk � �� � �P �Bk � �� ���

��� Survival analysis

Historically� the schema theorem has emphasized the disruptive aspects of reproductive
operators by assuming that at least one of the parents is a member of Hk and calculating



the likelihood that neither of the children will be instances of Hk� The complement of this
is �survival� in which at least one of the o�spring are in Hk�

More formally� let Ak be a random variable which describes the number of parents that are
instances of Hk� For survival analysis� then� Ak can take on values � and �� Again� let Bk

be the random variable describing the number of o�spring that are instances of Hk� Bk can
take on values �� �� and �� We can then express the probability of survival as�

Ps�Hk� � P �Bk � � � � j Ak � � � ��

� P �Bk � � j Ak � � � �� � P �Bk � � j Ak � � � �� ���

For survivability� the general formula given by equation � for E�Bk� �the expected number
of o�spring in Hk� specializes to�

Es�Bk� �
X

b�f�����g

b� P �Bk � b j Ak � � � �� ���

The subscript s is a reminder that the situation is one in which the survival of an individual
in Hk is at stake� By expanding the summation and using equation � we have�

Es�Bk� � P �Bk � � j Ak � � � �� � �P �Bk � � j Ak � � � ��

� Ps�Hk� � P �Bk � � j Ak � � � �� ���

So� we can see that the expected number of o�spring that will reside in Hk is determined
by the traditional survival analysis Ps�Hk� and an additional term giving the probability
that both o�spring will be in Hk� The particulars are� of course� operator speci
c and will
be explored in more detail in later sections�

��� Construction analysis

The constructive view of a two�parent operator is that members of Hk are built up from
instances of lower�order hyperplanes �Syswerda ������ Following Syswerda� we consider the
creation of a kth�order hyperplane Hk from two lower�order hyperplanes Hm and Hn of
order m and n respectively� with Hm and Hn non�overlapping and k � m� n�

Of the k alleles in Hk� m are supplied by one parent� while n are supplied by the other�
Since they are non�overlapping� there are �k ways the k alleles necessary to construct Hk

can be distributed between the two parents� We refer to each of these ways as a situation�
which is denoted by � � S � �k� The binary representation of S indicates which parent
has each of the k alleles� Thus� S uniquely identi
es Hm and Hn� For example� S � �
corresponds with Hm � Hk and S � �k � � corresponds with Hn � Hk� Then� for each
situation we denote the probability of constructing a member of Hk from Hm and Hn as
Pc�Hk j S��

Once again consider Ak to be the random variable that describes the number of parents
that are instances of Hk� For survival analysis it is always assumed that at least one parent



is an instance of Hk� However� for construction it is also possible for neither parent to be in
Hk� so for construction Ak can take on values �� �� and �� Again� Bk is the random variable
describing the number of o�spring that are instances of Hk� Bk can take on values �� ��
and �� This allows us to more formally express the probability that Hk will be constructed
from a given situation of Hm and Hn�

Pc�Hk j S� � P �Bk � � � � j �Ak � � � � � �� � S�

� P �Bk � � � � j S�

� P �Bk � � j S� � P �Bk � � j S� ���

As before� the general formula given by equation � �for computing the expected number of
o�spring in Hk� can be specialized for construction�

Ec�Bk j S� �
X

b�f�����g

b� P �Bk � b j S�

The subscript c is a reminder that the situation is one in which the construction of an
individual in Hk is at stake� By expanding the summation and using equation �� we have�

Ec�Bk j S� � P �Bk � � j S� � �P �Bk � � j S�

� Pc�Hk j S� � P �Bk � � j S�

So� we can see that the expected number of o�spring that will be in Hk is determined by the
traditional construction analysis Pc�Hk j S� and an additional term giving the probability
that both o�spring will be in Hk� Finally we can compute the average Ec�Bk� over all
constructive situations� Of the �k situations� all are constructive except for the two extreme
cases in which all alleles are on one of the parents �S � � and S � �k � ��� These two cases
represent survival� not construction� Hence�

Ec�Bk� �
�

�k � �

�
k��X
S��

Ec�Bk j S� ���

�
�

�k � �

�
k��X
S��

h
Pc�Hk j S� � P �Bk � � j S�

i

�
�

�k � �

�
k��X
S��

Pc�Hk j S� �
�

�k � �

�
k��X
S��

P �Bk � � j S�

Note that the 
rst term is just the probability of constructing a member of Hk averaged
over all constructive situations� If we denote this average by Pc�Hk�� i�e��

Pc�Hk� �
�

�k � �

�
k��X
S��

Pc�Hk j S�



then the previous equation simpli
es to�

Ec�Bk� � Pc�Hk� �
�

�k � �

�
k��X
S��

P �Bk � � j S� �	�

Further simpli
cations are operator speci
c and will be explored in detail in later sections�

��� Survival � Construction analysis

The formalism of the previous section provides the basis to express the combined e�ects
of both survival and construction by simply including the two survival terms that were
removed �Hm � Hk and Hn � Hk�� Thus the expected number of o�spring in Hk is given
by�

Ec�s�Bk� �
�

�k

�
k��X
S��

Ec�s�Bk j S�

�
�

�k

�
k��X
S��

h
Pc�s�Hk j S� � P �Bk � � j S�

i

�
�

�k

�
k��X
S��

Pc�s�Hk j S� �
�

�k

�
k��X
S��

P �Bk � � j S�

The subscript c� s is a reminder that the situation is one in which the construction or
survival of an individual in Hk is at stake� As before� we note that the 
rst term is just the
probability of obtaining a member of Hk from either construction or survival� averaged over
all situations� If we denote this average by Pc�s�Hk�� then the previous equation simpli
es
to�

Ec�s�Bk� � Pc�s�Hk� �
�

�k

�
k��X
S��

P �Bk � � j S� ���

Pc�s�Hk� can be further expanded to explicitly identify the contributions of survival and
construction� Recall that the two survival cases are when Hm � Hk �S � �� and Hn � Hk

�S � �k � ��� Hence�

Pc�s�Hk� �
�

�k

�
k��X
S��

Pc�s�Hk j S�

�
�

�k

h
Pc�s�Hk j S � �� � Pc�s�Hk j S � �k � �� �

�
k��X
S��

Pc�s�Hk j S�
i

�
�

�k

h
�Ps�Hk� � ��k � ��Pc�Hk�

i
���



This general framework can now be applied to speci
c two�parent operators� We do so for
recombination and mutation in the following sections�

� Dining with Recombination

��� Survival under recombination

Equation � provides the general expression for the expected number of o�spring Bk in Hk

via survival� namely�

Es�Bk� � Ps�Hk� � P �Bk � � j Ak � � � ��

For the speci
c case of recombination� the term P �Bk � � j Ak � � � �� can be simpli
ed
by noting that the only way both o�spring can reside in Hk is if both parents do� Hence�

P �Bk � � j Ak � � � �� � P �Bk � � � Ak � �� � P �Bk � � � Ak � ��

� P �Bk � � j Ak � �� P �Ak � �� �

P �Bk � � j Ak � �� P �Ak � ��

� �� P �Ak � �� � �� P �Ak � ��

� P �Ak � ��

It remains then to derive P �Ak � ��� In general� it is di�cult to derive precise expressions
for such probabilities at a particular point in time because they vary from generation to
generation in complex� non�linear� and interacting ways� We can� however� for visualization
purposes obtain considerable insight into the e�ects of population homogeneity by making
the simplifying assumption that at a particular point in time� the probability that both
parents have the same allele at a particular de
ning position d is given by Peq�d� � Peq �
That is� the probabilities at each de
ning position are independent and identical�

Adopting the Peq�d� � Peq assumption here allows us to express the probability that both

parents are in Hk simply as P �Ak � �� � Peq
k� Hence�

Es�Bk� � Ps�Hk� � Peq
k

It is easily seen from this formulation how the expected number of survivors can vary
from � to � as a function of the disruptiveness of the recombination operator and the
homogeneity of the population� The actual form this expected value takes is easily visualized
by simply adding the constant Peq

k to typical survival probability curves for standard N �
point recombination and parameterized P� uniform recombination operators �see De Jong
and Spears ������ for more details�� In the special case of Peq � � the graphs are identical
�see Figure ���� If Peq � � all the curves in Figure � are translated upward � their basic
form remains the same�

�L is the length of the individual�
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Figure �� Ps�Hk� for H� when L � �� and Peq � ���� for N �point and P� uniform recombi�
nation�

��� Construction via recombination

Equation 	 gives the general expression for the expected number of o�spring Bk in Hk via
construction� namely�

Ec�Bk� � Pc�Hk� �
�

�k � �

�
k��X
S��

P �Bk � � j S�

Again� the only way two recombination o�spring can reside in Hk is if both parents do�
Hence� P �Bk � � j S� � P �Ak � �� and

Ec�Bk� � Pc�Hk� �
�

�k � �

�
k��X
S��

P �Ak � ��

� Pc�Hk� � P �Ak � ��

If� as before� we adopt the Peq�d� � Peq assumption for visualization purposes� then we
have�

Ec�Bk� � Pc�Hk� � Peq
k

It is easily seen from this formulation how the expected number of constructed members of
Hk can vary from � to � as a function of the constructiveness of the recombination operator
and the homogeneity of the population� The actual form this expected value takes is easily
visualized by simply adding the constant Peq

k to typical construction probability curves for
standard N �point recombination and parameterized P� uniform recombination operators
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Figure �� Pc�Hk� of H� when L � �� and Peq � ���� for N �point and P� uniform recombi�
nation�

�see Spears and De Jong ������ for more details�� In the special case of Peq � � the graphs
are identical �see Figure ��� If Peq � � all the curves in Figure � are translated upward �
their basic form remains the same�

In comparing the survival and construction graphs for recombination� one is immediately
struck by their complementary features� more disruptive operators �low survivability� have
high constructive potential and vice versa� This suggests there is a No Free Lunch Theorem
lurking in the background� We explore this possibility in the next section�

��� Survival � Construction using recombination

Equation � provides a general expression for the expected number of o�spring Bk in Hk �via
survival or construction�� namely�

Ec�s�Bk� � Pc�s�Hk� �
�

�k

�
k��X
S��

P �Bk � � j S�

As we have seen before� with recombination Bk can only be � when Ak is �� Thus�

P �Bk � � j S� � P �Ak � ��

Using this fact along with equation � we have�

Ec�s�Bk� � Pc�s�Hk� � P �Ak � �� ����

�
�

�k

h
�Ps�Hk� � ��k � ��Pc�Hk�

i
� P �Ak � ��
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Figure �� Pc�s�Hk� of H� when L � �� and Peq � ���� The results are the same regardless
of recombination operator�

If we make our Peq�d� � Peq assumption for visualization purposes� then P �Ak � �� � Peq
k

as before and�

Ec�s�Bk� �
�

�k

h
�Ps�Hk� � ��k � ��Pc�Hk�

i
� Peq

k

If we plot Pc�s�Hk� �or Ec�s�Bk�� for all the standard N �point and P� uniform recombination
operators� we obtain the rather surprising result illustrated in Figure �� All recombination
operators have the same graphs� Pc�s�Hk� and Ec�s�Bk� are only a�ected by Hk and pop�
ulation homogeneity� but not by the form of recombination� Or� in more familiar terms�
there appears to be no free lunch with recombination� Increasing survivability results in an
o�setting reduction in constructability� and vice versa�

The key question is whether this �no free lunch� observation is due to our Peq�d� � Peq
assumption for visualization purposes� or whether this result is independent of any such
assumptions� The rather surprising answer is that it is true in the more general case� We
provide the proof for this in the remainder of this section�

For Hk there are �k possible recombination events� denoted by R� where � � R � �k � ��
Each recombination event R can be represented by a bit mask of length k �i�e�� the binary
representation of R�� where a ��� at position j indicates that recombination swapped the
alleles at position j between the two parents� and a ��� means that recombination did not
swap the alleles at position j� All N �point recombination events and all parameterized
uniform recombination events can be described with these bit masks�

Consider a breakdown of Pc�s�Hk� over all situations S and recombination events R as
follows�

Pc�s�Hk� �
�

�k

X
S

Pc�s�Hk j S�



Pc�s�Hk� �
�

�k

X
R

X
S

P �R� Pc�s�Hk j S � R�

Pc�s�Hk� �
�

�k

X
R

h
P �R�

X
S

Pc�s�Hk j S � R�
i

The following important fact illustrates a tight relationship between situations and recom�
bination events�

Pc�s�Hk j S � R� � Pc�s�Hk j S � z � R� z� � z � S � R ����

The variable z represents any integer and the � operator represents addition modulo �k�
The point is that since there are �k situations and �k recombination events� nothing changes
if both the situation and the recombination event are changed the same way� For example�
suppose one considers the situation S � � and recombination event R � �� The situation
S � � indicates that all of the alleles for hyperplane Hk are in the 
rst parent� The
recombination event R � � indicates that no alleles are exchanged during recombination�
Now also consider situation S � � and recombination event R � �� In this case the second
parent contains one of the desired alleles� However� since R � � will in fact exchange
that allele� the o�spring will be the same as that produced from situation S � � and
recombination event R � �� This example is easily generalized to yield equation ��� Thus�

Pc�s�Hk� �
�

�k

X
R

h
P �R�

X
S

Pc�s�Hk j S � z � R� z�
i

� z

If we let z � �R �modulo �k�� we can rephrase the inner sum in terms of one recombination
event only�

Pc�s�Hk� �
�

�k

X
R

h
P �R�

X
S

Pc�s�Hk j S �R � R � ��
i

where the � operator represents subtraction modulo �k� Since the inner summation is
summing over all situations �they are just shifted by R�� this is equivalent to�

Pc�s�Hk� �
�

�k

X
R

h
P �R�

X
S

Pc�s�Hk j S � R � ��
i

This inner summation can now be separated from the events R�

Pc�s�Hk� �
�

�k

hX
S

Pc�s�Hk j S � R � ��
ihX

R

P �R�
i



Now� the probability of all recombination events must sum to ���� so�

Pc�s�Hk� �
�

�k

hX
S

Pc�s�Hk j S � R � ��
i

����

Clearly this does not depend on the form of recombination� since the probability of recom�
bination events is absent� What this says is that Pc�s�Hk� is the same� regardless of the
form of recombination� Only the population homogeneity will change the value of Pc�s�Hk��
This is true also for Ec�s�Bk� �see equation ����

This particular No Free Lunch theorem is similar in spirit to the previous results for concept
learning �Wolpert ����� Sha�er ����� Rao� Gordon� and Spears ������ search� and opti�
mization �Wolpert and Macready ���	�� Roughly speaking� the results in concept learning
depend upon the assumption that concept learning problems are uniformly likely� Similarly�
the results in search and optimization depend upon the assumption that the functions to be
searched are uniformly likely �for further details see the cited papers�� Although our results
do not depend on assumptions about functions or problems per se� they do depend on the
assumption that all situations S are uniformly likely� It is an open issue as to whether our
results will generalize to non�uniform distributions of situations�

� Dining with Mutation

To provide insight into the relative roles of recombination and mutation� we develop a similar
analysis for mutation in this section� As noted earlier we do so by also viewing mutation as
a two�parent operator in order to directly compare the expected number of o�spring Bk in
Hk produced via mutation with that of recombination�

We assume mutation works on alphabets of cardinality C in the following fashion�� An
allele is picked for mutation with probability �� Then that allele is changed to one of the
other C � � alleles� uniformly randomly��

��� Survival under mutation

Equation � provides the general expression for the expected number of o�spring Bk in Hk

via survival� namely�

Es�Bk� �
X

b�f�����g

b� P �Bk � b j Ak � � � �� ����

Without loss of generality� assume that the 
rst parent is in Hk� while the second parent is
arbitrary� To compute Es�Bk� it turns out to be more convenient to focus on the similarity
of the two parents� as opposed to concentrating on Ak explicitly� This is done by letting
Q be a random variable that describes the set of alleles �at the de
ning positions� in the
second parent that do not match Hk� Then we can write Es�Bk� as follows�

�The analysis for recombination holds for arbitrary cardinality alphabets as well�
�This form of mutation is reasonable for discrete representations� however� it should be modi�ed

for real�valued representations�



Es�Bk� �
X
Q

P �Q�
h
P �Bk � � j Q� � �P �Bk � � j Q�

i

Now consider the derivation of P �Bk � � j Q�� In order to have both o�spring be in Hk

�i�e�� Bk � ��� the k alleles in the 
rst parent �associated with the hyperplane Hk� must not
be mutated� since the 
rst parent is already in Hk� However� the jQj di�ering alleles in the
second parent must be mutated� while the remaining k � jQj alleles in the second parent
must not be mutated� in order to place the second o�spring in Hk�

� For a general alphabet
of cardinality C� if an allele is mutated� there is a ���C � �� probability of mutating it to
the desired allele� Thus� the probability of placing both o�spring in Hk is simply computed
as�

P �Bk � � j Q� � ��� ��
k
h � �

C � �

�jQj
��� ��

k�jQj
i

where the probability of not mutating the k alleles of the 
rst parent is ��� ��
k
� and

the remainder of the expression is the probability of mutating the second parent into the
hyperplane Hk�

It is now possible to compute the probability that only one o�spring will be in Hk� Clearly
that will occur if the 
rst parent is kept in Hk while the second parent is not mutated into
Hk� or if the 
rst parent is mutated out of Hk while the second parent is mutated into Hk�
This can be simply computed by using the components of the previous equation�

P �Bk � � j Q� � ��� ��
k
h
� �

�
�

C � �

�jQj
��� ��

k�jQj
i

�

h
� � ��� ��

k
i h � �

C � �

�jQj
��� ��

k�jQj
i

With some simpli
cation Es�Bk� can now be expressed for � mutation�

Es�Bk� �
X
Q

P �Q�
h
��� ��

k
�

�
�

C � �

�jQj
��� ��

k�jQj
i

����

It will be noted that P �Q� depends on the population homogeneity� If we make our Peq�d� �
Peq assumption for visualization purposes� then P �Q� is simply�

P �Q� � ��� Peq�
jQj Peq

k�jQj ����

Figure � illustrates Es�Bk� when C � �� for mutation rates ranging from ��� to ���� for H��
while Peq ranges from ��� to ���� Inspection of Figure � for plausible estimates of population

�jQj is the cardinality of the set Q�
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Figure �� Es�Bk� of H� for mutation when C � ��

homogeneity �where Peq � ��C� indicates that the maximum survivability �highest Es�Bk��
occurs when � � ���� while the minimum survivability �lowest Es�Bk�� occurs when � � ����
as would be expected� Note also that Es�Bk� is una�ected by Peq when � � ���� This
makes sense� since when C � � and the mutation rate is ���� both parents are just randomly
reinitialized�

��� Construction via mutation

By equation � we can write �for mutation��

Ec�Bk� �
�

�k � �

�
k��X
S��

Ec�Bk j S�

where the situations range over the �k � � possible constructive ways in which the k alleles
can be distributed across the two parents� What remains� then� is to derive an expression
for Ec�Bk j S��

Without loss of generality� assume that the 
rst parent is in Hn� while the second parent
is in Hm� To compute Ec�Bk j S� it will be convenient to let Q be a random variable that
describes the set of alleles �at the de
ning positions� in the second parent that do not match
Hn� Similarly� let R be a random variable that describes the set of alleles �at the de
ning
positions� in the 
rst parent that do not match Hm� Then we can write Ec�Bk j S� as
follows�

Ec�Bk j S� �
X
Q

X
R

P �Q � R�
h
P �Bk � � j Q � R� � �P �Bk � � j Q � R�

i

Now consider the derivation of P �Bk � � j Q � R�� In order to have both o�spring be in



Hk �i�e�� Bk � ��� the n alleles in the 
rst parent �associated with the hyperplane Hn� must
not be mutated� Also� of the remaining m alleles in the 
rst parent� jRj must be mutated
�while m � jRj are not�� Finally� the m alleles in the second parent �associated with the
hyperplane Hm� must not be mutated� Of the remaining n alleles in the second parent� jQj
must be mutated �while n � jQj are not�� For a general alphabet of cardinality C� if an
allele is mutated� there is a ���C � �� probability of mutating it to the desired allele� Thus�
the probability of placing both o�spring in Hk is simply computed as�

P �Bk � � j Q � R� �

h � �

C � �

�jRj
��� ��

m�jRj
��� ��

n
ih � �

C � �

�jQj
��� ��

n�jQj
��� ��

m
i

The 
rst term expresses the probability of placing the 
rst o�spring in Hk� The probability
of not mutating the n correct alleles of the 
rst parent is ��� ��n� Also� since jRj of the
remaining m alleles are incorrect� jRj must be mutated to the correct allele while m � jRj
are not mutated� The second term expresses the probability of placing the second o�spring
in Hk�

It is now possible to compute the probability that only one o�spring will be in Hk� Clearly
that will occur if the 
rst o�spring is placed in Hk while the second o�spring is not� or if the
second o�spring is placed in Hk while the 
rst o�spring is not� This can be easily computed
by using the components of the previous equation�

P �Bk � � j Q � R� �

h � �

C � �

�jRj
��� ��m�jRj ��� ��n

i h
� �

�
�

C � �

�jQj
��� ��n�jQj ��� ��m

i
�

h
� �

�
�

C � �

�jRj
��� ��

m�jRj
��� ��

n
i h � �

C � �

�jQj
��� ��

n�jQj
��� ��

m
i

Thus� with some simpli
cation�

Ec�Bk j S� � ����

X
Q

X
R

P �Q � R�
h � �

C � �

�jRj
��� ��

k�jRj
�

�
�

C � �

�jQj
��� ��

k�jQj
i

It will be noted that P �Q � R� depends on the population homogeneity� If we make our
Peq�d� � Peq assumption for visualization purposes� then P �Q � R� is simply�

P �Q � R� � ��� Peq�
jQj�jRj

Peq
k�jQj�jRj ��	�

Figure � illustrates Ec�Bk� when the cardinality of the alphabet C � �� for mutation rates
ranging from ��� to ���� for H�� while Peq ranges from ��� to ���� Inspection of Figure �
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Figure �� Ec�Bk� of H� for mutation when C � ��

where Peq � ��C indicates that the maximum construction �highest Ec�Bk�� occurs when
� � ���� while the minimum construction �lowest Ec�Bk�� occurs when � � ���� as would be
expected� Note also that Ec�Bk� is una�ected by Peq when � � ���� This makes sense� since
when C � � and the mutation rate is ���� both parents are just randomly reinitialized�

��� Survival � Construction using mutation

In an earlier section we saw that more disruptive recombination operators achieve higher
levels of construction� However� this is not the case for mutation� Although high levels
of mutation are the most disruptive �low values of Es�Bk��� they also achieve the worst
levels of construction �lowest values of Ec�Bk��� Thus� in general� a No Free Lunch theorem
with respect to the disruptive and constructive aspects of mutation does not hold� The
implications of this particular di�erence between mutation and recombination are not yet
clear�

� Summary and Conclusions

There has been considerable discussion of the pros�cons of recombination and mutation
operators in the context of Holland�s schema theory� In this paper we de
ned a common
framework for extending and relating previous �disruption� and �construction� analyses for
both recombination and mutation�

The framework indicated that more disruptive recombination operators achieve higher levels
of construction� This led to a No Free Lunch theorem for recombination operators� with
respect to survivability �the opposite of disruption� and construction� The theorem makes
the assumption that all situations S are equally probable� This seems reasonable� since if
one is given no prior information concerning the problem the evolutionary algorithm is to
see� there appears to be no reason to assume that any particular situation will be more



likely than another�� Thus� given no prior information� it appears problematic to assume
that any particular recombination operator will yield desirable behavior�

On the other hand� the more disruptive mutation rates yield lower levels of construction�
Thus� there is no general No Free Lunch for mutation� with respect to disruption and
construction� The implications of this particular result are not yet clear�

The framework introduced in this paper can also be used to help characterize the roles
of recombination and mutation� These results are beyond the scope of this paper� but
the interested reader can 
nd the details in Spears ������� We provide a brief synopsis
here� It turns out that mutation can achieve any level of disruption that recombination
can achieve� but can also achieve higher levels of disruption than recombination� Thus one
role of mutation appears to be disruption� On the other hand� recombination can achieve
higher levels of construction than mutation� indicating that one role of recombination does
in fact appear to be construction� Moreover� the constructive advantage of recombination
�over mutation� is maximized when the lower�order hyperplanes Hm and Hn are of roughly
the same order� Finally� there is one speci
c case where mutation obeys the above No
Free Lunch theorem� It turns out that when the cardinality C � � and the population
is maximally diverse �Peq � ��� � mutation acts just like P� uniform recombination� thus
allowing the No Free Lunch theorem for recombination to carry over to mutation�
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