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Abstract

There has been considerable discussion of the pros/cons of recombination and
mutation operators in the context of Holland’s schema theory. In this paper we
define a common framework for extending and relating previous “disruption” and
“construction” analyses for both recombination and mutation. This results in
several insights into the properties of recombination and mutation, including a
No Free Lunch theorem for recombination operators as well as the lack of such a
theorem for mutation.

1 Introduction

The motivation for the original schema analysis of Holland (1975) was to compute the
expected number of instances of hyperplanes at time ¢ + 1, given their number at time ¢. To
use the notation of Goldberg (1987), let m(H) be the number of individuals in hyperplane
H at time ¢t. Then let fi(H) be the observed average fitness of the hyperplane at time ¢
and let f; be the observed average fitness of the population at time ¢. Then the ezpected
number of individuals in H at time ¢ + 1 is given by the schema theorem:



fi(H)
i

E[mt+1(H)] Z mt(H) Psurvival(H)

where Pgyrypival (H) is the probability that the hyperplane will not be disrupted by either
mutation or recombination (i.e., it survives). The inequality refers to the fact that not

only may a hyperplane H survive, it also may be constructed from other hyperplanes. See
Holland (1975) or Goldberg (1987) for further discussions of this equation.

In order to improve this result to a precise equality, detailed aspects of the makeup of the
entire population must be modeled (Goldberg 1989; Whitley 1992; Vose 1995), resulting in
exact but difficult to analyze characterizations of GA behavior. In this paper we extend
earlier work in which a less precise but useful characterization of population makeup is
adopted, resulting in more tractable models of GA behavior (Spears and DeJong 1991;
De Jong and Spears 1992). This allows us to define a framework for extending and relating
previous “disruption” and “construction” analyses for both recombination and mutation.
This results in several insights into the properties of recombination and mutation, including
a No Free Lunch theorem (Wolpert 1992; Shaffer 1994; Rao, Gordon, and Spears 1995;
Culberson 1996; English 1997; Wolpert and Macready 1997) for recombination operators as
well as the lack of such a theorem for mutation.

2 Framework

The schema theorem articulates how the ezpected makeup of the next generation E[myy1] is
a function of the current generation my, selection, and the reproductive operators. If cloning
is the only reproductive operator, E[my1] is completely determined by m; and selection. Of
interest then is characterizing the perturbation effects due to reproductive operators such
as recombination and mutation. Following the standard schema analysis, we focus on a
particular kth order hyperplane Hj and ask how recombination and mutation perturb the
expected number of offspring in Hy in the next generation.

We do so in the following manner. First, to allow a direct comparison of the effects of
recombination and mutation, we treat them both as reproductive operators that take two
parents as input and produce two children as output. In the case of mutation, this is
equivalent to two independent applications of the standard one-parent mutation operator,
but has the advantage that it allows us to compare the expected number of offspring residing
in Hy, as a result of a single application of either operator.

More formally, let By, be a random variable describing the number of offspring residing in
Hy, as a result of a single application of any two-parent reproductive operator. Then the
expected number of offspring in Hy can be computed as follows:

E[By = Y bxP(By=b) = P(By=1) + 2P(B,=2) (1)
be{0,1,2}
2.1 Survival analysis

Historically, the schema theorem has emphasized the disruptive aspects of reproductive
operators by assuming that at least one of the parents is a member of Hy and calculating



the likelihood that neither of the children will be instances of Hy. The complement of this
is “survival” in which at least one of the offspring are in Hj,.

More formally, let A be a random variable which describes the number of parents that are
instances of Hy. For survival analysis, then, A can take on values 1 and 2. Again, let By,
be the random variable describing the number of offspring that are instances of Hy. By can
take on values 0, 1, and 2. We can then express the probability of survival as:

PS(Hk) = P(BkZI \% 2|Ak:1 \ 2)
P(Bk:].|Ak:1V2)+P(Bk:2|Ak:].\/2) (2)

For survivability, the general formula given by equation 1 for E[By] (the expected number
of offspring in H},) specializes to:

E,[By] = Z bx P(By=b|Ar,=1V 2) (3)
b€{0,1,2}

The subscript s is a reminder that the situation is one in which the survival of an individual
in Hy is at stake. By expanding the summation and using equation 2 we have:

ES[Bk] = P(Bk:1|Ak:1V2)+2P(Bk:2|14k:1\/2)
—  PJH) + P(By=2|Ar=1V 2) )

So, we can see that the expected number of offspring that will reside in Hy, is determined
by the traditional survival analysis Ps(Hy) and an additional term giving the probability
that both offspring will be in Hy. The particulars are, of course, operator specific and will
be explored in more detail in later sections.

2.2 Construction analysis

The constructive view of a two-parent operator is that members of Hj, are built up from
instances of lower-order hyperplanes (Syswerda 1989). Following Syswerda, we consider the
creation of a kth-order hyperplane Hj from two lower-order hyperplanes H,, and H, of
order m and n respectively, with H,,, and H, non-overlapping and k = m + n.

Of the k alleles in Hy, m are supplied by one parent, while n are supplied by the other.
Since they are non-overlapping, there are 2¥ ways the k alleles necessary to construct Hy,
can be distributed between the two parents. We refer to each of these ways as a situation,
which is denoted by 0 < S < 2*. The binary representation of S indicates which parent
has each of the k alleles. Thus, S uniquely identifies H,, and H,. For example, S = 0
corresponds with H,, = Hj, and S = 2% — 1 corresponds with H,, = Hj. Then, for each
situation we denote the probability of constructing a member of Hy from H,, and H,, as
P.(H | S).

Once again consider Ay to be the random variable that describes the number of parents
that are instances of Hy. For survival analysis it is always assumed that at least one parent



is an instance of Hy,. However, for construction it is also possible for neither parent to be in
Hy, so for construction Ay can take on values 0, 1, and 2. Again, By, is the random variable
describing the number of offspring that are instances of Hy. Bj can take on values 0, 1,
and 2. This allows us to more formally express the probability that Hy will be constructed
from a given situation of H,, and H,:

PC(Hk|S) = P(Bk:1V2|(Ak:0V1\/2)/\S)
= P(Bk:1v2|8)
— P(By=1|8) + P(Bi=2]8) 5)

As before, the general formula given by equation 1 (for computing the expected number of
offspring in H},) can be specialized for construction:

EfBr|S] = Y bxPBy=b]S)

be{0,1,2}

The subscript ¢ is a reminder that the situation is one in which the construction of an
individual in Hy, is at stake. By expanding the summation and using equation 5, we have:

EBi|S] = P(Bi=1|8) + 2P(By=2]8)

So, we can see that the expected number of offspring that will be in Hy, is determined by the
traditional construction analysis P.(Hj, | §) and an additional term giving the probability
that both offspring will be in Hy. Finally we can compute the average E.[Bj]| over all
constructive situations. Of the 2* situations, all are constructive except for the two extreme
cases in which all alleles are on one of the parents (S = 0 and S = 2¥ —1). These two cases
represent survival, not construction. Hence,

2k _2
1

E[B:] = 55— > E.[By | 8] (6)
s=1

2k _2
1

- m; [P.(H | S) + P(By=2]9)]
2k _2 2k _2

1
mzp(3k22|3)

=1 S=1

1

= 2k_2sz:Pc(Hk|S) +

Note that the first term is just the probability of constructing a member of Hy averaged
over all constructive situations. If we denote this average by P.(Hy), i.e.,

2k _2

1
P.(Hy) = Y Z Pe(Hy | S)
S=1



then the previous equation simplifies to:

2k _2

E(Bi] = PHy) + g Y. P(Bi=2]8) (7)
S=1

Further simplifications are operator specific and will be explored in detail in later sections.

2.3 Survival 4+ Construction analysis

The formalism of the previous section provides the basis to express the combined effects
of both survival and construction by simply including the two survival terms that were
removed (H,, = Hy, and H, = Hy). Thus the expected number of offspring in Hj, is given
by:

2k_1

1
Ec,s[Bk] = Y Z Ec,s[Bk | S]
S=0

2k—1

= 5 [PeslHLS) + P(B=2]9)]
S=0

1 2k -1 1 2k -1

= 2 PealHi |S) + 5 D P(Br=219)

5=0 S§=0

The subscript ¢,s is a reminder that the situation is one in which the construction or
survival of an individual in Hj, is at stake. As before, we note that the first term is just the
probability of obtaining a member of Hj, from either construction or survival, averaged over
all situations. If we denote this average by P. s(H}), then the previous equation simplifies
to:

2k_1

FeolBil = Pos(H) + op 3 P(Be=2]9) ®
S=0

P, (Hy) can be further expanded to explicitly identify the contributions of survival and
construction. Recall that the two survival cases are when H,,, = Hy (S =0) and H, = Hy,
(S =2F —1). Hence,

2k_1

PoslHi) = 5 3 PulHi | S)
S=0
= %[PC,S(Hk |S=0) + P.s(H, | S=2F-1) + i P s(Hy | S)]
S=1
_ %[st(m) + (28 = 2)P.(Hy)] 9)



This general framework can now be applied to specific two-parent operators. We do so for
recombination and mutation in the following sections.

3 Dining with Recombination

3.1 Survival under recombination

Equation 4 provides the general expression for the expected number of offspring By in Hy,
via survival, namely:

Es[Bk] = Ps(Hk) + P(Bk =2 | A, =1V 2)

For the specific case of recombination, the term P(By =2 | Ay =1 V 2) can be simplified
by noting that the only way both offspring can reside in Hy, is if both parents do. Hence,

PBr=2|A4=1V 2 = PBy=2AA,=1) + P(By=2 A A, =2)
P(Br=2|Ay=1) P(4,=1) +

P(Br =2 A =2) P(A; =2)

0% P(Ax =1) + 1% P(dx =2

P(Ar =2)

It remains then to derive P(A = 2). In general, it is difficult to derive precise expressions
for such probabilities at a particular point in time because they vary from generation to
generation in complex, non-linear, and interacting ways. We can, however, for visualization
purposes obtain considerable insight into the effects of population homogeneity by making
the simplifying assumption that at a particular point in time, the probability that both
parents have the same allele at a particular defining position d is given by Pe,(d) = Peq.
That is, the probabilities at each defining position are independent and identical.

Adopting the P4(d) = P., assumption here allows us to express the probability that both
parents are in Hy, simply as P(4; =2) = Peqk. Hence,

E,[B] = Py(Hy) + P.,*

It is easily seen from this formulation how the expected number of survivors can vary
from 0 to 2 as a function of the disruptiveness of the recombination operator and the
homogeneity of the population. The actual form this expected value takes is easily visualized
by simply adding the constant Peqk to typical survival probability curves for standard N-
point recombination and parameterized Py uniform recombination operators (see De Jong
and Spears (1992) for more details). In the special case of P,y = 0 the graphs are identical
(see Figure 1).! If P.;, > 0 all the curves in Figure 1 are translated upward — their basic
form remains the same.

'L is the length of the individual.
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Figure 1: P;(H},) for Hy when L = 30 and P., = 0.0, for N-point and P, uniform recombi-
nation.

3.2 Construction via recombination

Equation 7 gives the general expression for the expected number of offspring By in Hj, via
construction, namely:

2k _2

BBy = PulHy) + g 3 P(Bi=2]8)
S=1

Again, the only way two recombination offspring can reside in Hj, is if both parents do.
Hence, P(B, =2|S) = P(A; =2) and

2k _2
1
E.By] = P.(Hy) + T 32—31 P(A; =2)
= Pc(Hk) + P(Ak = 2)
If, as before, we adopt the P.,(d) = P., assumption for visualization purposes, then we

have:
E.[By] = P.(Hy) + Po,*

It is easily seen from this formulation how the expected number of constructed members of
Hy, can vary from 0 to 2 as a function of the constructiveness of the recombination operator
and the homogeneity of the population. The actual form this expected value takes is easily
visualized by simply adding the constant Peqk to typical construction probability curves for
standard N-point recombination and parameterized P, uniform recombination operators
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Figure 2: P.(H}) of Hy when L = 30 and P, = 0.0, for N-point and Py uniform recombi-
nation.

(see Spears and De Jong (1991) for more details). In the special case of P.; = 0 the graphs
are identical (see Figure 2). If P, > 0 all the curves in Figure 2 are translated upward —
their basic form remains the same.

In comparing the survival and construction graphs for recombination, one is immediately
struck by their complementary features: more disruptive operators (low survivability) have
high constructive potential and vice versa. This suggests there is a No Free Lunch Theorem
lurking in the background. We explore this possibility in the next section.

3.3 Survival + Construction using recombination

Equation 8 provides a general expression for the expected number of offspring By in Hy, (via
survival or construction), namely:

2k_1

EolBi = PoolHi) + o 3 P(By=2]$)
=0
As we have seen before, with recombination By can only be 2 when Ay, is 2. Thus,
PB,=21]S) = P(A, =2)
Using this fact along with equation 9 we have:

Ec,s[Bk] = Pc,s(Hk) + P(Ak = 2) (10)

= lerm) + @ -] + P =2)
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Figure 3: P, ;(Hy) of H, when L = 30 and P., = 0.5. The results are the same regardless
of recombination operator.

If we make our P,,(d) = P,, assumption for visualization purposes, then P(4; = 2) = P,,*
as before and:

1
EeslBi] = 5 [2P.(H) + (2k—2)PC(Hk)] + P

If we plot P, s(Hy) (or E. s[By]) for all the standard N-point and Py uniform recombination
operators, we obtain the rather surprising result illustrated in Figure 3. All recombination
operators have the same graphs. P, (H}) and E. s[By] are only affected by Hj, and pop-
ulation homogeneity, but not by the form of recombination. Or, in more familiar terms,
there appears to be no free lunch with recombination! Increasing survivability results in an
offsetting reduction in constructability, and vice versa.

The key question is whether this “no free lunch” observation is due to our P,(d) = P
assumption for visualization purposes, or whether this result is independent of any such
assumptions. The rather surprising answer is that it is true in the more general case. We
provide the proof for this in the remainder of this section.

For Hj, there are 2¥ possible recombination events, denoted by R, where 0 < R < 2¥ — 1.
Each recombination event R can be represented by a bit mask of length & (i.e., the binary
representation of R), where a ’1’ at position j indicates that recombination swapped the
alleles at position j between the two parents, and a ’0’ means that recombination did not
swap the alleles at position j. All N-point recombination events and all parameterized
uniform recombination events can be described with these bit masks.

Consider a breakdown of P, s(H}) over all situations S and recombination events R as
follows:

1
Pc,s(Hk) = Q_kZPC,S(Hk |S)
S



Poo(Hp) = 52> Y P(R) Pew(Hi | S A R)
R S

P(R)Y Peo(Hi | S A R)]
S

;u
=

[l

2
=[]

The following important fact illustrates a tight relationship between situations and recom-
bination events:

P.s(Hi|S ANR) = P.s(H, |S®z AN R&z) VzVS VR (11)

The variable z represents any integer and the @ operator represents addition modulo 2*.
The point is that since there are 2¥ situations and 2* recombination events, nothing changes
if both the situation and the recombination event are changed the same way. For example,
suppose one considers the situation S = 0 and recombination event R = 0. The situation
S = 0 indicates that all of the alleles for hyperplane Hj are in the first parent. The
recombination event R = 0 indicates that no alleles are exchanged during recombination.
Now also consider situation & = 1 and recombination event R = 1. In this case the second
parent contains one of the desired alleles. However, since R = 1 will in fact exchange
that allele, the offspring will be the same as that produced from situation & = 0 and
recombination event R = 0. This example is easily generalized to yield equation 11. Thus:

Pes(Hg) = %Z[P(R)ZPC,S(H]C |S®z A R@z)] V2
R S

If we let z = —R (modulo 2*), we can rephrase the inner sum in terms of one recombination
event only:
1
Pos(Hi) = 353 [p(R) S Py(Hi|S6R A R= 0)]
R S

where the © operator represents subtraction modulo 2*. Since the inner summation is
summing over all situations (they are just shifted by R), this is equivalent to:

Pos(Hi) = 5 3 [PR) Y. Pes(Hi | § A R=0)]
R S

This inner summation can now be separated from the events R:

Pes(Hi) = op [ PeaHe |5 n R=0)][ 3 P(R)]
S R



Now, the probability of all recombination events must sum to 1.0, so:
1
Pes(Hi) = |3 Pes(Hie | S A R =0)] (12)
S

Clearly this does not depend on the form of recombination, since the probability of recom-
bination events is absent. What this says is that P. ;(Hy) is the same, regardless of the
form of recombination. Only the population homogeneity will change the value of P, ;(Hy).
This is true also for E,. s[By] (see equation 10).

This particular No Free Lunch theorem is similar in spirit to the previous results for concept
learning (Wolpert 1992; Shaffer 1994; Rao, Gordon, and Spears 1995), search, and opti-
mization (Wolpert and Macready 1997). Roughly speaking, the results in concept learning
depend upon the assumption that concept learning problems are uniformly likely. Similarly,
the results in search and optimization depend upon the assumption that the functions to be
searched are uniformly likely (for further details see the cited papers). Although our results
do not depend on assumptions about functions or problems per se, they do depend on the
assumption that all situations S are uniformly likely. It is an open issue as to whether our
results will generalize to non-uniform distributions of situations.

4 Dining with Mutation

To provide insight into the relative roles of recombination and mutation, we develop a similar
analysis for mutation in this section. As noted earlier we do so by also viewing mutation as
a two-parent operator in order to directly compare the expected number of offspring By in
H;, produced via mutation with that of recombination.

We assume mutation works on alphabets of cardinality C' in the following fashion.? An
allele is picked for mutation with probability u. Then that allele is changed to one of the
other C — 1 alleles, uniformly randomly.?

4.1 Survival under mutation

Equation 3 provides the general expression for the expected number of offspring By, in Hy,
via survival, namely:

E,[By] = Z bx P(By=b|A,=1V 2) (13)
b€{0,1,2}

Without loss of generality, assume that the first parent is in Hy,, while the second parent is
arbitrary. To compute E;[By] it turns out to be more convenient to focus on the similarity
of the two parents, as opposed to concentrating on Ay explicitly. This is done by letting
@ be a random variable that describes the set of alleles (at the defining positions) in the
second parent that do not match Hy. Then we can write E4[By] as follows:

2The analysis for recombination holds for arbitrary cardinality alphabets as well.
3This form of mutation is reasonable for discrete representations, however, it should be modified
for real-valued representations.



BB = Y PQ[PB=11Q) + 2P(Bi=2]Q)
Q

Now consider the derivation of P(Br = 2 | @). In order to have both offspring be in Hy,
(i.e., Bx, = 2), the k alleles in the first parent (associated with the hyperplane H}) must not
be mutated, since the first parent is already in Hj,. However, the |@Q| differing alleles in the
second parent must be mutated, while the remaining k — |Q| alleles in the second parent
must not be mutated, in order to place the second offspring in Hj.* For a general alphabet
of cardinality C, if an allele is mutated, there is a 1/(C — 1) probability of mutating it to
the desired allele. Thus, the probability of placing both offspring in Hy, is simply computed
as:

(o]
P =21Q) = a-w' [ (Gg) a-wt

where the probability of not mutating the k alleles of the first parent is (1 — ,u)k, and
the remainder of the expression is the probability of mutating the second parent into the
hyperplane Hy,.

It is now possible to compute the probability that only one offspring will be in Hj,. Clearly
that will occur if the first parent is kept in Hy while the second parent is not mutated into
Hj,, or if the first parent is mutated out of Hj while the second parent is mutated into Hy.
This can be simply computed by using the components of the previous equation:

PBy=11Q) = (1-p[1- (%)Q (-9 +
- aet] [ () amw]

c-1

With some simplification E;s[Bj] can now be expressed for y mutation:

_ ot s () g e
Bip) = Sr@[0-nt + (g%5) a-w?] (1)

It will be noted that P(Q) depends on the population homogeneity. If we make our P, (d) =
P, assumption for visualization purposes, then P(Q) is simply:

P(Q) = (1-P.,)9 P, (15)

Figure 4 illustrates F4[By] when C = 2, for mutation rates ranging from 0.0 to 1.0, for Hs,
while P,, ranges from 0.0 to 1.0. Inspection of Figure 4 for plausible estimates of population

4|Q| is the cardinality of the set Q.
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Figure 4: E[By] of Hy for mutation when C = 2.

homogeneity (where P, > 1/C) indicates that the maximum survivability (highest E5[By])
occurs when p = 0.0, while the minimum survivability (lowest E¢[By]) occurs when p = 1.0,
as would be expected. Note also that E,[By] is unaffected by P., when g = 0.5. This
makes sense, since when C' = 2 and the mutation rate is 0.5, both parents are just randomly
reinitialized.

4.2 Construction via mutation

By equation 6 we can write (for mutation):

2k _2

Ec[Br] = 57— ZEBHS

where the situations range over the 2% — 2 possible constructive ways in which the k alleles
can be distributed across the two parents. What remains, then, is to derive an expression
for E.[By | S].

Without loss of generality, assume that the first parent is in H,, while the second parent
is in Hy,. To compute E.[By | S] it will be convenient to let @@ be a random variable that
describes the set of alleles (at the defining positions) in the second parent that do not match
H,,. Similarly, let R be a random variable that describes the set of alleles (at the defining
positions) in the first parent that do not match H,,. Then we can write E.[By | S] as
follows:

E[By | 8] = ZZPQ/\R[ (k:1|Q/\R)+2P(Bk:2|Q/\R)]
Q R

Now consider the derivation of P(Br, =2 | @ A R). In order to have both offspring be in



Hy, (i.e., By = 2), the n alleles in the first parent (associated with the hyperplane H,,) must
not be mutated. Also, of the remaining m alleles in the first parent, |R| must be mutated
(while m — |R| are not). Finally, the m alleles in the second parent (associated with the
hyperplane H,,) must not be mutated. Of the remaining n alleles in the second parent, |Q|
must be mutated (while n — |@| are not). For a general alphabet of cardinality C, if an
allele is mutated, there is a 1/(C — 1) probability of mutating it to the desired allele. Thus,
the probability of placing both offspring in Hy, is simply computed as:

P(B,=2|Q A R) =
[(E%T)WW1—MW““u—M”H(E%T)Wul—MWWW1—mm

The first term expresses the probability of placing the first offspring in Hy. The probability
of not mutating the n correct alleles of the first parent is (1 — pu)"™. Also, since |R| of the
remaining m alleles are incorrect, |R| must be mutated to the correct allele while m — |R|
are not mutated. The second term expresses the probability of placing the second offspring
in Hk

It is now possible to compute the probability that only one offspring will be in Hj,. Clearly
that will occur if the first offspring is placed in H}, while the second offspring is not, or if the
second offspring is placed in Hj, while the first offspring is not. This can be easily computed
by using the components of the previous equation:

P(By=1|Q A R) =

[(5%7)R<1—mmI€O—M”][1—(E%T)WW1—M"”W1—mm}+

[1-—(a%q)mul—mm*m<r—mn}[(a%q)wul—uwﬂm<1—mm}
Thus, with some simplification:

E.By | 8] = (16)

It will be noted that P(Q A R) depends on the population homogeneity. If we make our
P.,(d) = P., assumption for visualization purposes, then P( A R) is simply:

P@Q A R) = (1-Py) @ B 1010 (17)

Figure 5 illustrates E.[By] when the cardinality of the alphabet C' = 2, for mutation rates
ranging from 0.0 to 1.0, for H,, while P,, ranges from 0.0 to 1.0. Inspection of Figure 5
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Figure 5: E.[By] of Hy for mutation when C = 2.

where P.;, > 1/C indicates that the maximum construction (highest E.[By]) occurs when
u = 0.0, while the minimum construction (lowest E.[By]) occurs when p = 1.0, as would be
expected. Note also that E.[By] is unaffected by P.y when p = 0.5. This makes sense, since
when C' = 2 and the mutation rate is 0.5, both parents are just randomly reinitialized.

4.3 Survival + Construction using mutation

In an earlier section we saw that more disruptive recombination operators achieve higher
levels of construction. However, this is not the case for mutation. Although high levels
of mutation are the most disruptive (low values of E4[By]), they also achieve the worst
levels of construction (lowest values of E.[By]). Thus, in general, a No Free Lunch theorem
with respect to the disruptive and constructive aspects of mutation does not hold. The
implications of this particular difference between mutation and recombination are not yet
clear.

5 Summary and Conclusions

There has been considerable discussion of the pros/cons of recombination and mutation
operators in the context of Holland’s schema theory. In this paper we defined a common
framework for extending and relating previous “disruption” and “construction” analyses for
both recombination and mutation.

The framework indicated that more disruptive recombination operators achieve higher levels
of construction. This led to a No Free Lunch theorem for recombination operators, with
respect to survivability (the opposite of disruption) and construction. The theorem makes
the assumption that all situations S are equally probable. This seems reasonable, since if
one is given no prior information concerning the problem the evolutionary algorithm is to
see, there appears to be no reason to assume that any particular situation will be more



likely than another.> Thus, given no prior information, it appears problematic to assume

that any particular recombination operator will yield desirable behavior.

On the other hand, the more disruptive mutation rates yield lower levels of construction.
Thus, there is no general No Free Lunch for mutation, with respect to disruption and
construction. The implications of this particular result are not yet clear.

The framework introduced in this paper can also be used to help characterize the roles
of recombination and mutation. These results are beyond the scope of this paper, but
the interested reader can find the details in Spears (1998). We provide a brief synopsis
here. It turns out that mutation can achieve any level of disruption that recombination
can achieve, but can also achieve higher levels of disruption than recombination. Thus one
role of mutation appears to be disruption. On the other hand, recombination can achieve
higher levels of construction than mutation, indicating that one role of recombination does
in fact appear to be construction. Moreover, the constructive advantage of recombination
(over mutation) is maximized when the lower-order hyperplanes H,,, and H,, are of roughly
the same order. Finally, there is one specific case where mutation obeys the above No
Free Lunch theorem. It turns out that when the cardinality C' = 2 and the population
is maximally diverse (P, = 0), p mutation acts just like Py uniform recombination, thus
allowing the No Free Lunch theorem for recombination to carry over to mutation.
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