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1 Introduction

Many algorithms have been devised for tackling combinatorial optimisation
problems (COPs). Traditional Operations Research (OR) techniques such as
Branch and Bound and Cutting Planes Algorithms can, given enough time,
guarantee an optimal solution as they explicitly exploit features of the opti-
misation function they are solving. Specialised heuristics exist for most COPs
that also exploit features of the optimisation function to arrive at a good, but
probably not optimal, solution. There also exist a number of metaheuristics,
algorithms that describe how to search the solution space without being tied to
any one problem type. Some of these may be tailored to make them suit a par-
ticular problem better. However, there are a number of so-called “black-box”
optimisation algorithms, which use little or no problem-specific information.
Key examples of the black-box approach are Evolutionary Algorithms (EAs)
and Simulated Annealing (SA). Random search is also a black-box optimisa-
tion algorithm, and so represents an important benchmark against which the
performance of other search algorithms may be measured.

Given an optimisation problem (i.e. objective function) f and an algorithm
a, it is important to have some measure of how well a performs on f . More-
over, given empirical evidence of a’s performance on f , is it possible to make
generalisations about a’s performance on other functions, either of the same or
different type as f? Intuition would have one believe that there are some algo-
rithms that will perform better than others on average. However, the No Free
Lunch (NFL) Theorems state that such an assertion cannot be made. That is,
across all optimisation functions, the average performance of all algorithms is
the same. This means that if an algorithm performs well on one set of problems
then it will perform poorly (worse than random search) on all others.

To put the NFL theorems in their proper context, it is important to under-
stand what they are and are not saying. From [2], p.69:

...[W]e cannot emphasize enough that no claims whatsoever are
being made in this paper concerning how well various search algo-
rithms work in practice. The focus . . . is on what can be said a priori,
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without any assumptions and from mathematical principles alone,
concerning the utility of a search algorithm.

2 The NFL Theorems

Wolpert and Macready [1, 2] investigated what claims can be made a priori
about optimisation algorithms using probability theory. The reasons for choos-
ing probability theory are given in [2]. They used two approaches in their
study, the first is to analyse how a particular algorithm performs over all prob-
lems, while the second involves holding the optimisation function constant and
analysing how it is dealt with over all algorithms. The former is discussed largely
in [2], while the latter is discussed in more detail in [1].

The notation used and first NFL theorem are presented before a discussion
of the implications of the theorem. Define X to be the finite search space and Y
to be the finite space of “cost” values. Optimisation problems f are represented
as mappings f : X 7→ Y. F = YX then represents the space of all possible
problems.

As an algorithm progresses, it will visit and evaluate points in the search
space. The NFL analysis considers only distinct evaluations of members of X
as this makes the analysis easier, even though this is an unrealistic given that
most black-box optimisation algorithms revisit points in the search space.

A “sample” of size m is a time-ordered series of points in X × Y, and rep-
resents the points visited by an algorithm in its search. Samples are denoted
by dm ≡ {(dx

m(1), dy
m), . . . , (dx

m(m), dy
m(m))}. According to [2], a sample also

includes the neighbours of visited solutions. For instance, a hill-climbing algo-
rithm will have only one current solution, but at each iteration will evaluate
all neighbouring solutions, which are also part of dm. Performance measures of
an algorithm are denoted by Φ(dy

m), and may represent any evaluation of an
algorithm’s performance based on the costs in its current sample dm.

The performance of an algorithm can be measured using P (dy
m|f,m, a),

which is the conditional probability of obtaining the sample costs dy
m on op-

timisation function f by applying algorithm a for m iterations. Given this, one
can analyse how two algorithms compare across all optimisation problems by
comparing the sum of conditional probabilities across all possible f for each algo-
rithm. Through their analysis, Wolpert and Macready found that P (dy

m|f,m, a)
is independent of a.

Theorem 1 For any pair of algorithms a1 and a2,∑
f

P (dy
m|f,m, a1) =

∑
f

P (dy
m|f,m, a2).

The second NFL theorem is for time-dependent (i.e. dynamic) optimisation
problems, and gives the same result. The NFL results also hold for stochastic
algorithms, as these are effectively deterministic given a particular random seed.
It is beyond the scope of this summary to describe the proof of these theorems.
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3 Implications of the NFL Theorems

The fundamental implication of the first two NFL theorems is that if an algo-
rithm performs well on one class of problems then it must do poorly on other
problems. Moreover, an algorithm that performs well on one class of problems
must perform worse than random search on all remaining problems. Two im-
mediate conclusions can be drawn from this. First, running an algorithm on a
small number of problems with a small range of parameter settings may not be
a good predictor of that algorithm’s performance on other problems, especially
problems of a different type. Second, the result of Theorem 1 holds as long as
knowledge of a problem’s structure is not incorporated into a search algorithm.
In other words, incorporating problem-specific information into an algorithm
will improve its match to that problem and hence, its performance.

4 Other Findings

Wolpert and Macready derive a number of other results from the NFL theorems,
some of which are summarised here.

It is possible to consider the NFL results from a geometric perspective, which
allows for the closeness of the match between an algorithm a and an optimisation
problem f to be determined. However, in practice exploiting this feature of the
probability functions used in the NFL theorems is extremely difficult.

While the NFL theorem states that the average performance across all prob-
lems is the same for all algorithms, in certain circumstances distinctions may
be made between different algorithms. Consider two deterministic algorithms
a1 and a2. Let it be the case that there are a number of problems for which the
costs produced by a1 are considerably better than those produced by a2. For
the NFL theorem to hold, it could be the case that there are many more prob-
lems for which a2 performs better, but only by a small amount. Hence, if the
problems we are largely concerned with are those for which a1 performs much
better than a2, it is possible to make a distinction between the two algorithms.

5 Summary

Black-box optimisation algorithms exploit little or no information about a prob-
lem when solving it. Yet they often perform quite well (better than random
search) on many of the problems we are interested in. Paradoxically, the NFL
theorems offer one way to explain the success of these techniques. The first
NFL theorem shows that all algorithms exhibit the same average performance
taken across all possible problems. Considered from a geometric perspective,
the performance of an algorithm is related to its alignment with the problem
being solved. Hence, given that the space of all possible problems must contain
problems for which an algorithm is well aligned as well as problems for which
a problem is not well aligned, its performance will, across all problems, be no
better than random search. However, in practice we are not interested in the
range of all possible problems, but a much narrower group for which there is
often quite close alignment between problem and algorithm. Furthermore, if an
algorithm can make use of knowledge of the problem structure (or can derive
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such knowledge) then its alignment with that problem will be improved with a
corresponding improvement in its performance on that problem.
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