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Abstract

It is often claimed that Evolutionary Algorithms are superior to other opti�

mization techniques� in particular� in situations where not much is known about

the objective function to be optimized� In contrast to that Wolpert and Macready

������ proved that all optimization techniques have the same behavior � on aver�

age over all f 	 X � Y where X and Y are 
nite sets� This result is called No Free
Lunch Theorem� Here di�erent scenarios of optimization are presented� It is argued

why the scenario on which the No Free Lunch Theorem is based does not model

real life optimization� For more realistic scenarios it is argued why optimization

techniques di�er in their e�ciency� For a small example this claim is proved�

�This work was supported by the Deutsche Forschungsgemeinschaft �DFG� as part of the Collaborative
Research Center �Computational Intelligence� ������
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� Introduction

The importance of optimization problems in computer science� many other research areas�
industrial applications� and even in everyday life is evident� Since a long time a lot of
optimization techniques have been presented and applied� among them gradient methods�
Lagrangian optimization� greedy methods� divide�and�conquer� dynamic programming�
local search� branch�and�bound� simulated annealing� and many variants of Evolutionary
Algorithms� Some of these techniques only work under certain assumptions� others are
claimed to be robust� i� e�� to be useful for all types of problems� The techniques have been
compared for certain types of problems but no one was able to prove that one technique
is superior to another one in general� Nevertheless� several advocates of Evolutionary
Algorithms have stated that Evolutionary Algorithms are superior when averaging over
all types of problems� This has been disproved by the No Free Lunch Theorem due
to Wolpert and Macready �����	� Before stating the result we precisely describe the
underlying scenario�

Scenario �� �No Free Lunch Scenario	 The problem is drawn randomly from F 
 ff �
X � Y g where X and Y are �nite sets and Y is completely ordered� The aim is to
�nd some x � X such that f�x	 is maximal �or minimal	� The resources used by an
algorithm for f are measured by the number of dierent x such that f�x	 is evaluated�
The assumption of �nite sets X and Y is not really a restriction�

Theorem � �No Free Lunch Theorem�� With respect to Scenario �� all optimization
techniques �deterministic and even randomized ones	 have the same average behavior�

This result is subject to intense and controversial discussions �compare Culberson �����	�
Radclie and Surry �����	� as well as the No Free Lunch Theorem discussion page at
http���lucy�ipk�fhg�de��mario�nfl� or the Yin�Yang page about the panel discussion
at the International Conference on Genetic Algorithms ���� at http���www�aic�nrl�

navy�mil��spears�yin�yang�html	 that are still going on today �compare recent dis�
cussions in comp�ai�genetic	� In Section �� we present a list of other scenarios for
optimization� Common to all scenarios is that we have a set F 
 ff � X � Y g� where X
and Y are �nite sets� Furthermore� there is a set F � � F that contains the functions that
may be subject to optimization� We investigate the average performance of optimization
algorithms over all f � F �� In the No Free Lunch Scenario we have F � 
 F � We shortly
discuss scenarios where some structural knowledge on the function to be optimized is
given� Then optimization techniques like Evolutionary Algorithms certainly can have an
advantage� But this is no argument in favor of the claim that Evolutionary Algorithms
do better than other optimization techniques� e� g�� on average over �all� problems� We
present a general black box optimization scenario for classes of functions whose complexity
or di�culty is restricted in some sense� These scenarios are discussed in detail in Section
�� We give arguments why this scenario �ts much better to real life optimization than
Scenario �� Then it is argued how optimization techniques can take advantage from the
knowledge that the complexity of the considered function is bounded�
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In Section �� the discussion is focused on the possible advantage of Evolutionary Algo�
rithms in black box optimization� Unfortunately� we cannot prove rigorously that dierent
optimization techniques in general behave dierently in these scenarios� Indeed� experi�
ences from complexity theory indicate that such a general proof most probably is not
possible� In Section �� we restrict ourselves to small sets X and Y � Then we can prove
that we gain something by choosing a clever optimization technique� Since X and Y are
quite small� we cannot gain a lot� Therefore� what we get is �perhaps not a free lunch
but at least a free appetizer�� Or to state it more seriously� For black box optimization
with the only assumption that the functions are not unrealistically complex it is possible
to gain something by choosing a good optimization technique�

� Scenarios for Optimization

The No Free Lunch Theorem holds in Scenario � where all functions f � X � Y are
considered� In a speci�c situation one has to optimize one speci�c function�

Scenario �� �One Shot Scenario	� A function f � X � Y �X and Y �nite� Y completely
ordered	 has to be optimized�

It makes no sense to compare optimization techniques in this scenario� One may be lucky
and start with some optimal x� � X� Therefore� a problem �from a scienti�c point of
view	 has to have a lot of problem instances�

Scenario �� �Fixed Problem Scenario	� We are concerned with a �xed type of problem�
e� g�� sorting� linear programming� or the traveling salesman problem TSP�

In this scenario we have some kind of semantic knowledge about the set F � of functions
that can be subject to optimization� This is the classical situation attacked by methods
from the research area called E�cient Algorithms� We guess that there are no doubts
that speci�c algorithms like quicksort or heapsort for sorting or the simplex method
for linear programming can be superior to general techniques� For other problems like
TSP the situation is more involved� Speci�c algorithms are very successful but only
recently Michalewicz �����	 has presented a problem speci�c crossover operator �inver�
over	 and has obtained some impressive results with Evolutionary Algorithms� It seems
to be necessary to use problem speci�c components for Evolutionary Algorithms in order
to compete with other problem speci�c algorithms�

Scenario �� �Fixed Function Type Scenario	� It is known that the function f is chosen
from some class of functions sharing some structural property like separability� unimodal�
ity or being a polynomial of small degree�

Here� we have some kind of syntactic knowledge about the set F � of possible objective
functions� For simple classes of functions� e� g�� separable functions or linear functions�
simple optimization techniques are so fast that no general technique can compete with
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them� In more complex situations general techniques� among them variants of Evolution�
ary Algorithms� are very successful� There is a lot of literature discussing these successes�
we refer for Evolutionary Strategies to Rechenberg �����	 and Schwefel �����	� for Evo�
lutionary Programming to Fogel �����	� for Genetic Algorithms to Goldberg �����	 and
Holland �����	� and for Genetic Programming to Koza �����	� But all these scenarios are
far from the No Free Lunch Scenario and� moreover� successes of Evolutionary Algorithms
in one of these scenarios do not support the claim that Evolutionary Algorithms adapt to
�almost	 each type of problem� For such a discussion we suggest the following scenario�

Scenario �� �Restricted Black Box Optimization	� This scenario is the same as the No
Free Lunch Scenario with the only exception that F 
 ff � X � Y g is replaced by some
subset F � of functions f � X � Y whose complexity �in a sense to be speci�ed	 is not too
large�

In Section �� we discuss some realistic restrictions� Here we motivate this scenario with
some general remarks� In order to apply optimization techniques which evaluate the
considered function f at a lot of points x it is necessary that the computation of y 
 f�x	
can be done e�ciently� Hence� the claim that Evolutionary Algorithms are superior to
other optimization techniques is meaningful only in some type of restricted black box
scenario� The No Free Lunch Theorem holds in the no free lunch scenario which also may
be called unrestricted black box optimization scenario� The question is whether the No
Free Lunch Theorem can be generalized to restricted black box optimization scenarios�

� Some Realistic Black Box Optimization Scenarios

We look for scenarios of restricted black box optimization which do not exclude some
interesting problem from consideration� The �rst idea is to consider only functions from
the complexity class P� i� e�� functions where one single evaluation is computable in poly�
nomial time� This complexity class usually is de�ned with respect to Turing machines
which leads people to deny its practical signi�cance� But the de�nition is robust� i� e��
we may replace Turing machines by random access machines or by our favorite computer
�with a �nite number of processors	� given that the memory is su�ciently large for the
task at hand� The typical NP�hard optimization problems have objective functions which
can be evaluated in polynomial time� often in linear time and sometimes even in sublinear
time� E� g�� the distance matrix of a TSP instance with n cities has n� entries but the cost
of a tour can be computed in O�n	 time� This indicates that it is meaningful to restrict
the resource bounds for the evaluation of the objective function to bounds like O�n�	�
O�n�	 or O�n	� Then the computation model has to be �xed and it would be stupid to
consider Turing machines� Random access machines �see Garey and Johnson �����	 and
Papadimitriou �����		 are widely accepted as suitable model but the reader should feel
free to choose his or her own model�

The problem with this approach is that we implicitly consider functions f � �� � IN� i� e��
functions with an in�nite support� This excludes by de�nition results like the No Free
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Lunch Theorem� We restrict ourselves to �nite functions� e� g�� f � f�� �gn � f�� �gm for
�xed n and m�

Scenario ���� �Time Restricted Black Box Optimization	� The restriction is given by
a time bound T on the number of steps to evaluate f �

Having �xed X 
 f�� �gn and Y 
 f�� �gm we have switched from uniform computation
models �the input length is not �xed	 to so�called nonuniform computation models �see
Garey and Johnson �����	 for a thorough discussion of these terms	� The most popular
nonuniform computation model is the Boolean circuit with AND�� OR�� and NOT�gates�
Although circuits are a hardware model� they can be used as appropriate model here�
Time restricted computations lead to size restricted circuit representations where the size
bound only is by a logarithmic factor larger than the given time bound �see Garey and
Johnson �����	 and Wegener �����		�

Scenario ���� �Size Restricted Black Box Optimization	� The restriction is given by a
bound s on the size of a representation of f � e� g�� the circuit size�

The last restriction we like to introduce is a bound on the Kolmogoro complexity �see
the monograph of Li and Vit�anyi �����		� This complexity measure is de�ned in a rather
abstract way� The Kolmogoro complexity of a sequence s of zeros and ones is� for
some universal Turing machine� the length of the shortest program producing s� The
essential Invariance Theorem says that the Kolmogoro complexity changes only by a
constant additive term if we replace one universal Turing machine by another� This
theory seems to be too strange to have applications� But the theory is very robust and
we may use it for our purposes� A function f � f�� �gn � f�� �gm can be described as
list of all f�x	� x � f�� �gn� and� therefore� as ����sequence� Then we may replace the
universal Turing machine by a programming language� Loosely speaking the Kolmogoro
complexity of f is the minimal length of a standard C���program which computes the
value table of f � Problems in applications have a small Kolmogoro complexity� since we
may write a program executing a loop which evaluates and lists all f�x	� x � X�

Scenario ���� �Kolmogoro Complexity Restricted Black Box Optimization	� The
restriction is given by a bound b on the Kolmogoro complexity of f �

Summarizing we claim that situations where Evolutionary Algorithms can or will be
applied fall into the classes covered by the dierent restricted black box optimization
scenarios� Hence� comparisons of optimization techniques should be performed within
such scenarios�
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� Evolutionary Algorithms and Restricted Black Box

Optimization

First� we recall the most important argument in the proof of the No Free Lunch Theorem�
If all f�x	� x � X � � X� are known� then g � X � X � � Y de�ned by g�x	 
 f�x	 on
the restricted input set is still a random function on X � X �� By evaluating f on some
inputs x we learn the corresponding values f�x	 but nothing else� In restricted black box
optimization we are not confronted with all functions f � X � Y � Hence� even if f�x	 and
also f�x�	 takes each value from Y with equal probability� the information that f�x	 
 y

may lead to the conclusion that a small or large value of f�x�	 is less ore more likely� Such
information can be used by optimization techniques in restricted black box optimization
scenarios�

Indeed� all explanations of the success of Evolutionary Algorithms are based on the fact
that we can deduce something on unknown function values from known ones� Mutations
lead in most cases to small changes of the considered x� It is believed that we may follow
some path to better and better inputs� Optimal inputs are not expected to be surrounded
by bad ones only� More involved arguments lead to the hypothesis of gradient di�usion�
Also the building block hypothesis is based on the assumption that the �tness values of
dierent x are correlated�

Here we have to argue why such correlations are possible in restricted and not in unre�
stricted black box optimization� We have already argued that a time restriction implies
a size restriction for circuits� Since the evaluation of a circuit can be described by a pro�
gram of �nite length� a size restriction for circuits leads to quite small restrictions of the
Kolmogoro complexity� There are �m�n functions f � f�� �gn � f�� �gm� The theory of
Kolmogoro complexity implies that almost all of them have a Kolmogoro complexity
of almost m�n and only an insigni�cant �more exactly exponentially small	 fraction of
these functions has a Kolmogoro complexity bounded above by m�n��� Let us consider
a small numerical example where n 
 ��� and m 
 ��� Programs which generate the
function table typically contain much less than m�n�� 
 �� � ��� bits� The whole function
table with m�n bits is described �implicitly	 by perhaps a few thousand bits� On average�
each bit in the program describes a huge number of bits in the function table� Such short
descriptions cannot create independent function values�

It seems to be hard �or even impossible	 to use these dependencies for a clever systematic
and deterministic optimization technique which� moreover� leads to a fast algorithm� Ran�
domness can use these dependencies in a much simpler way �see Motwani and Raghavan
�����		� So one may hope that the random modules of Evolutionary Algorithms implic�
itly bene�t from the dependencies implied by the bounded complexity of the considered
functions�

The claim that one optimization technique is in one of the restricted black box optimiza�
tion scenarios superior to another can� at least in principle� be proved or disproved� Such
results do not exist for sets X and Y of reasonable size� since it is di�cult to prove precise
results on classes of random functions with some complexity bound� This di�culty has
been established for a lot of similar problems in complexity theory�
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� A Free Appetizer

Since we cannot analyze optimization techniques in some restricted black box optimization
scenario for reasonable n and m� we restrict ourselves to the toy example X 
 f�� �g�

and Y 
 f�� �g�� The class of functions F 
 ff � X � Y g contains �� 
 ����� functions
which may be handled by case inspection� We interpret the binary strings as binary
representation of numbers which leads to an ordering of Y � The aim of our investigations
is to show how optimization techniques may take advantage from the structure given by
the restriction that f does not belong to the most complex ones�

We consider �� classes of functions� The circuit class C consists of all f � f�� �g� � f�� �g�

representable by circuits whose size is bounded by �� To consider more classes it is more
convenient to investigate representations where it is easier to compute the minimal size
of some function f � Such representations are OBDDs �ordered binary decision diagrams	
introduced by Bryant �����	� This representation is nowadays the state�of�the�art rep�
resentation of Boolean functions with applications in CAD tools and� in particular� for
veri�cation purposes� In the recent years� OBDDs have turned out to be also a quite pow�
erful representation in Genetic Programming� An OBDD �see Figure � for an example	
on the variable set Xn 
 fx�� � � � � xng is a directed acyclic graph� Sinks are labelled by
Boolean constants from f�� �g and inner nodes by Boolean variables from Xn� Each inner
node has two outgoing edges one labelled by � and the other by �� Furthermore� there
is an ordering of the variables such that on each path the labelling of the inner nodes
obeys this ordering� An OBDD represents f � f�� �gn � f�� �gm if each output bit fj is
represented at some OBDD node vj� In order to evaluate the function fv represented at v
on input a � f�� �gn we start at v� At a node with label xi we follow the edge with label
ai� then fv�a	 is the label of the sink �nally reached� The size of an OBDD is the number
of its inner nodes� The OBDD size of f is the size of the smallest OBDD �minimized
over all n� variable orderings	 representing f � In our example we have only six variable
orderings� For a �xed variable ordering it is easy to determine the minimal size of an
OBDD representing f � Indeed we have used one of the available OBDD packages�

Let Fi � F denote the class of all functions f � f�� �g� � f�� �g� whose OBDD size is
bounded by i� Then F 
 F�� Is it possible to use the information that f � Fi� i � �� for
an optimization algorithm�

We investigate three types of optimization algorithms� The �rst one consists of nonadap�
tive algorithms which sample the search space in a prede�ned order� i� e�� a nonadaptive
strategy does not react to the information already gathered� A nonadaptive strategy is
a permutation of the search space� We consider all �� 
 ����� nonadaptive algorithms�
Evolutionary Algorithms are adaptive� We investigate the �� � �	 Evolutionary Algo�
rithm EA� and a slight modi�cation EA�� These Evolutionary Algorithms follow general
optimization techniques� The last two algorithms denoted by MaxOpt and MinMax are
specialized algorithms using some knowledge about the class of considered functions�

We describe EA�� EA�� MaxOpt� and MinMax in more detail� According to our scenario�
there is no stopping criterion� The algorithms stop as soon as an optimal x is sampled�
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Figure �� An OBDD for the variable ordering x�� x�� x� representing at �v� w	 the function
f 
 �f�� f�	 such that f��x	 
 � for x 
 x�x�x� � f���� ���� ���� ���g and f��x	 
 � for
x 
 x�x�x� � f���� ���� ���� ���g�
The OBDD contains six inner nodes� i� e� its size is ��

The two �� � �	 EAs are possibly the most simple variants of an Evolutionary Algorithm
and have been object of various studies �Rudolph �����		�

Algorithm �� Evolutionary Algorithm EA�

�� Choose x � f�� �g� uniformly at random�

�� For i �	 � To 


With probability ��
 set yi �
 �� xi
Else set yi �
 xi�


� If f�y	 � f�x	 then x �
 y�

�� Continue at line ��

Algorithm �� Evolutionary Algorithm EA�

This algorithm is almost the same as EA�� only line � reads


� If f�y	 � f�x	 then x �
 y�

MaxOpt and MinMax are simple greedy algorithms based on an extensive study of the
situation� MaxOpt considers all possible functions and chooses that search point x which
is optimal for the largest number of functions� Either x is optimal and we stop or we
investigate one of the functions where x is not optimal� MinMax also considers the class
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of possible functions and looks for a search point x which leads to the largest decrease of
the number of possible functions if x is not optimal� Both algorithms need a lot of time to
compute the search points but our complexity measure is the number of dierent sampled
points� If an algorithm considers some point more than once� this is not counted�

Algorithm �� MaxOpt

�� Set G �	 Fi�

�� For each x � f�� �g� not yet sampled

Set mx �	 number of g � G such that x is optimal for g


� Sample some x where mx is maximal�

�� Remove all g � G that are maximal at x or differ from f�x	 at x�

�� Continue at line ��

Algorithm �� MinMax

�� Set G �	 Fi�

�� For each x � f�� �g� not yet sampled

For each y � f�� �g�

mx�y �	 size of G after removing all

functions g where g�x	 is maximal or g�x	 �
 y�


� For each x � f�� �g�

mx �	 maxfmx�yg�
�� Sample some x where mx is minimal�

�� Remove all g � G that are maximal at x or differ from f�x	 at x�

� Continue at line ��

In contrast to many other papers we have not performed experiments� In our toy example
it is possible to compute exactly the behavior of each of the algorithms on each of the
functions� For the Evolutionary Algorithms EA� and EA� we have investigated the
Markov chain describing the search process and have computed the expected number
of dierent sample points� All these computations have been done exactly without any
rounding� Only at the very end the numbers are rounded and presented in Table ��
Therefore� dierent table entries imply that it is rigorously proven that the algorithms
belonging to these entries have dierent behavior�

The �rst column contains the name of the considered class of functions� We remember
that F� 
 ff � f�� �g� � f�� �g�g describes the no free lunch scenario� the other sets
describe size restricted black box optimization scenarios where for Fi the OBDD size is
restricted and for C the circuit size� The next columns describe the size of the sets and
the �expected	 number of dierent sample points of the dierent algorithms� The notion
n�a avg� stands for the average over all nonadaptive strategies� n�a best and n�a worst for
the best resp� worst nonadaptive strategy�

First of all� for F� 
 F all algorithms perform equal as the No Free Lunch Theorem
states� The same holds for F�� since this class contains only the four constant functions�
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set jsetj EA� EA� n�a avg� n�a best n�a worst MaxOpt MinMax
F� � ������� ������� ������� ������� ������� ������� �������
F� �� ������� ������� ������� ������� ������� ������� �������
F� ��� ������� ������� ������� ������� ������� ������� �������
F� ���� ������� ������� ������� ������� ������� ������� �������
F� ���� ������� ������� ������� ������� ������� ������� �������
F� ����� ������� ������� ������� ������� ������� ������� �������
F� ����� ������� ������� ������� ������� ������� ������� �������
F� ����� ������� ������� ������� ������� ������� ������� �������
F� ����� ������� ������� ������� ������� ������� ������� �������
C ���� ������� ������� ������� ������� ������� ������� �������

Table �� Average number of distinct function evaluations�

and every algorithm �nds an optimal point by sampling the �rst point� For the other
classes there are dierences�

We have proved that size restricted black box optimization allows dierent behavior of
optimization techniques� The small size of the example allows only a small pro�t� There�
fore� we do not speak of a free lunch but only of a free appetizer� We list some more
results for our example drawn from Table ��

� EA� and EA� perform very similar�

� EA� and EA� are worse than the best nonadaptive strategy and even worse �except
for F�	 than the average nonadaptive strategy

� the greedy algorithms outperform the other algorithms� in most cases MaxOpt is
the winner�

� it seems to be harder to optimize functions with large complexity than functions
with small complexity�

The fact that we obtain similar results for restrictions on the OBDD and the circuit size
leads to the conjecture that our results are not biased by the chosen representation�

� Conclusions

The No Free Lunch Theorem is the correct answer to statements that an optimization
technique is on the set of all functions f � X � Y superior to another one� To resolve the
apparent contradiction between the No Free Lunch Theorem and the observed dierences
in the behavior of optimization techniques one has to describe clearly the scenario before
one starts discussions on the behavior of optimization techniques� For several scenarios
speci�c techniques are superior to general ones� One main statement is that nobody in
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applications is concerned with the unrestricted black box optimization scenario which is
the base of the No Free Lunch Theorem� Taking randomly a function f of this class we
have with large probability not enough time to evaluate f at only one sample point� We
suggest restricted black box optimization scenarios to compare the general behavior of
optimization techniques� For a small example we have proved that then a small free lunch
or a free appetizer is possible�
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