
Theoretical Computer Science 287 (2002) 131–144
www.elsevier.com/locate/tcs

Optimization with randomized search
heuristics—the (A)NFL theorem, realistic

scenarios, and di)cult functions�

Stefan Droste∗, Thomas Jansen, Ingo Wegener
FB Informatik, LS 2, Universitat Dortmund, 44221 Dortmund, Germany

Abstract

The No Free Lunch (NFL) theorem due to Wolpert and Macready (IEEE Trans. Evol. Comput.
1(1) (1997) 67) has led to controversial discussions on the usefulness of randomized search
heuristics, in particular, evolutionary algorithms. Here a short and simple proof of the NFL
theorem is given to show its elementary character. Moreover, the proof method leads to a
generalization of the NFL theorem. Afterwards, realistic complexity theoretical-based scenarios
for black box optimization are presented and it is argued why NFL theorems are not possible
in such situations. However, an Almost No Free Lunch (ANFL) theorem shows that for each
function which can be optimized e)ciently by a search heuristic there can be constructed many
related functions where the same heuristic is bad. As a consequence, search heuristics use some
idea how to look for good points and can be successful only for functions “giving the right
hints”. The consequences of these theoretical considerations for some well-known classes of
functions are discussed. c© 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

Randomized search heuristics like evolutionary algorithms [3,5,15], simulated an-
nealing [16], and tabu search [4] have found many applications. There are Cne-tuned
variants of these algorithms for problems with a known structure where certain mod-
ules are tuned to work for the given situation and there are general variants for the

� This work was supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the Collaborative
Research Center “Computational Intelligence” (531).

∗ Corresponding author. Tel.: +49-231-755-4702; fax: +49-231-755-2047.
E-mail addresses: droste@ls2.cs.uni-dortmund.de (S. Droste), jansen@ls2.cs.uni-dortmund.de (T. Jansen),

wegener@ls2.cs.uni-dortmund.de (I. Wegener).

0304-3975/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(02)00094 -4

132 S. Droste et al. / Theoretical Computer Science 287 (2002) 131–144

so-called black box applications. In this scenario the function f to be maximized (or
minimized) is not known and the only way to gain information on f is to ask for
the f-value of inputs. The ith query may depend on the Crst i − 1 queries and the
corresponding f-values. Black box optimization is useful in situations where nobody
has the resources and/or capabilities to design a specialized algorithm or where one has
to optimize a complex system whose behavior is not well understood and not formally
described.
Everybody is aware that specialized algorithms beat general search heuristics for the

problems they are designed for. However, many monographs on evolutionary algorithms
or other search heuristics (see, e.g. [5]) claim that some randomized search heuristic
beats (all) other algorithms on the average “of all problems” (which typically is not
formalized).
Wolpert and Macready [18] have considered the set FA;B of all functions f : A→B; A

and B Cnite sets, B totally ordered, as a formalization of “all problems” and have
proved that in this scenario all search heuristics have the same average behavior. This
result has led to many controversial discussions (see, e.g. [1,13] or WWW discussions,
e.g., www.cs.uwyo.edu/∼wspears/yin-yang.html). We review the NFL theorem
in Section 2 and present a new simple proof not only of the NFL theorem but also
a generalized NFL theorem. The simplicity of the proof also implies that “there is no
secret or myth” behind the NFL theorem.
Section 3 is devoted to more realistic black box scenarios. Even these very general

scenarios allow some advantage for search heuristics. However, one has to admit that
most people working on heuristics for black box optimization have much more re-
stricted classes of functions in mind. The considered function should be “simple” and
“natural”, notions which cannot be formalized. In Section 4, a result called Almost No
Free Lunch (ANFL) theorem is proved. It proves that each search heuristic H which
is able to optimize some functions e)ciently follows some idea about the structure of
the considered functions. It is possible to describe other simple functions which are
closely related to functions easy for H and which, nevertheless, are hard for H . It is
also shown that this approach shows the di)culty of well-known classes of functions.
One may argue that the functions discussed in Section 4 are simple to describe but
not natural. Therefore, we present in Section 5 a natural and simple function which is
di)cult for all typically used search heuristics. We Cnish with some conclusions.

2. A generalized NFL theorem

We formally introduce the original NFL scenario.

Scenario 1 (No free lunch scenario). The sets A and B are /nite and B is completely
ordered. The class FA;B contains all functions f : A→B and the aim is maximization.
The function f is drawn uniformly from FA;B.

Usually, we expect from optimization algorithms that they stop after having found an
optimal point x which implicitly implies that the algorithm has proved x to be optimal.

mailto:www.cs.uwyo.edu/~wspears/yin-yang.html

S. Droste et al. / Theoretical Computer Science 287 (2002) 131–144 133

This is not the right aim in black box optimization. In order to know that x is optimal
in the NFL scenario, it is su)cient to know that f(x) is the maximal value of B. If the
f-value of optimal points is smaller than the maximum of B, it is necessary to see all
f-values in order to prove that some point is optimal. Since search heuristics use some
stopping criterion (implying that they sometimes fail to Cnd an optimum), we measure
the resources spent by an algorithm H for the function f by the (expected) number
of di3erent inputs a∈A such that f(a) has been evaluated until f is evaluated for
an optimal input a∗. Many popular search heuristics evaluate certain points more than
once but this can be avoided by using a dictionary of the inputs and their f-values
evaluated so far.
We have announced to prove a generalization of the NFL theorem, which not only

holds in the NFL scenario. A set F ⊆FA;B is called closed under permutations if it
contains with f also all f
 where
 is a permutation on A and

f
(a) := f(
(a)):

Obviously, FA;B is closed under permutations.

Theorem 1 (Generalized NFL theorem). Let H be an arbitrary (randomized or deter-
ministic) search heuristic for functions f∈F ⊆FA;B where F is closed under permuta-
tions. Let r(H) be the average (under the uniform distribution on F) of the expected
runtimes of H on F. Then r(H) is a value independent of H, i.e., r(H) is the same
for all H.

Proof. Let a∈A and B′
a= {b∈B |f(a)= b for some f∈F}. For a∈A and b∈B′

a let
Fa;b be the set of functions f′ : A−{a}→B such that the extension f : A→B deCned
by f(a)= b and f(a′)=f′(a′) for a′ ∈A−{a} belongs to F . The essential properties
are the following ones:
• Fa;b is closed under permutations.
• Fa;b and Fa′ ; b are isomorphic for a
= a′, i.e., if f∈Fa;b then f′, deCned by f′(a):=
f(a′) and f′(a′′):=f(a′′) for all a′′ ∈A− {a; a′}, belongs to Fa′ ; b.
We prove these two claims:

• Let f∈Fa;b and f′ its extension deCned by f′(a)= b. Let
 be a permutation on
A − {a} and
′ its extension on A deCned by
′(a)= a. Since F is closed under
permutations, f′

′ ∈F and f′

′(a)= b. Hence, f
 ∈Fa;b.

• Let f∈Fa;b and f∗ its extension deCned by f∗(a)= b. Then f∗ ∈F . Let f′ be
deCned by f′(a)=f(a′) and f′(a′′)=f(a′′) for all a′′ ∈A−{a; a′}. Let f∗∗ be the
extension of f′ deCned by f∗∗(a′)= b. Then f∗∗=f∗

 for the transposition
 inter-
changing a and a′, i.e.,
(a)= a′;
(a′)= a, and
(a′′)= a′′, otherwise. Moreover,
f∗∗ ∈F , since F is closed under permutations. This implies that f′ ∈Fa′ ; b.
First, we prove the theorem for deterministic search heuristics. This is done by

induction on |A|. The claim is obvious for |A|=1. For |A|¿1, let H and H ′ be
deterministic search strategies whose Crst search points are a and a′, respectively. Since
F is closed under permutations, the number of functions f∈F where a is optimal is
equal to the number of functions f∈F where a′ is optimal. If f(a)= b, strategy H is
faced with Fa;b. If f(a′)= b, strategy H ′ is faced with Fa′ ; b. The second claim shows

134 S. Droste et al. / Theoretical Computer Science 287 (2002) 131–144

that these are isomorphic problems and the Crst claim shows that these problems are
handled by induction hypothesis. Hence, the strategies H and H ′ have the same average
cost for all possible results b of the evaluation of the Crst search point. This implies
the result for deterministic search heuristics.
Now it is easy to generalize the result to randomized search strategies. The number

of diNerent deterministic search strategies is Cnite. Let m be its number. A randomized
search strategy is a probability distribution p=(p1; : : : ; pm) and chooses the ith deter-
ministic strategy with probability pi. We are considering a two persons game where
our opponent chooses f∈F and we choose the search strategy. Our aim is to minimize
the expected cost of the strategy. However, the strategy of the opponent is Cxed to
the uniform distribution of all f∈F . Then it is well-known (see, e.g. [9]) that the
expected cost of a randomized search heuristic is the weighted average of the cost of
the deterministic search heuristics. Since all deterministic search heuristics have the
same cost, this also holds for all randomized search heuristics.

The generalized NFL theorem is by no means surprising. If a class of functions does
not change by any permutation on the input space, there is no structure which can be
used for search. Hence, all search strategies show the same behavior.

3. More realistic scenarios for black box optimization

The classical NFL theorem holds in the NFL scenario and this is a scenario which
seems to be a reasonable formalization of the scenario containing “all” functions. How-
ever, this scenario is not realistic at all. The class of functions FA;B contains |B||A|
functions. The situation of A= {0; 1}100 is not unusual. Assuming, e.g., that B contains
the set of 20-bit integers, the number of functions equals 220×2

100
and, for each cod-

ing, only a tiny fraction of all functions can be described or evaluated with available
resources. Search heuristics are meaningless if it is too expensive to evaluate the given
function.
Before we discuss more realistic scenarios for black box optimization, we mention

two scenarios which should not be mixed up with black box optimization. We still
assume that A and B are Cnite and B is completely ordered.

Scenario 2 (One-shot-scenario). One function f : A→B has to be maximized.

This is the real-life situation. However, in black box optimization we do not know f.
Theory in the one shot scenario is not possible, since there is an algorithm with run-
time 1 (the di)culty is to Cnd this algorithm). Moreover, we are never designing
algorithms for the one-shot scenario but for functions of a given type.

Scenario 3 (Fixed-function-type scenario). It is known that f is chosen from some
class of functions sharing some properties.

This is the typical situation for the design of e)cient algorithms if each function
is some instance of the same general problem like the traveling sales-person problem

S. Droste et al. / Theoretical Computer Science 287 (2002) 131–144 135

or maximal matching. If the functions share some structural property like separability,
unimodality, or being a polynomial of small degree, there are special optimization
techniques and also special search heuristics (see, e.g. [11] or [7]).
However, this is more knowledge than we can expect to have in black box opti-

mization.

Scenario 4 (Restricted black box optimization). The scenario is the same as the NFL
scenario with the only exception that FA;B is replaced by some subset F ′

A;B of functions
whose complexity (in a sense to be speci/ed) is restricted.

In order to discuss the NFL theorem we start the discussion with restrictions which
necessarily are fulClled in real-life situations.

Scenario 4.1 (Time restricted black box optimization). The restriction is given by a
time bound t on the number of steps to evaluate f.

Scenario 4.2 (Size restricted black box optimization). The restriction is given by a
bound s on the size of a representation of f, e.g., by a circuit.

Scenario 4.3 (KolmogoroN complexity restricted black box optimization). The restric-
tion is given by a bound c on the Kolmogoro3 complexity of f.

Search heuristics can be successful only if the considered function is easy to evaluate.
The function has to be evaluated at many points. Hence, the evaluation time has to be
small. Remember that most of the famous NP-equivalent optimization problems have
objective functions which can be evaluated in linear time. The other way of thinking is
a hardware oriented one, a hardware description should be small and the KolmogoroN
complexity oriented point of view [8] is an even more robust one.
Our conjecture is that no such scenario where the restriction is not a trivial one allows

an NFL theorem. The problem with a proof is that nobody is able to discuss the class
of functions with bounds like t(n)= n; s(n)= n; c(n)= n, or even c(n)=O(log(n))
(KolmogoroN complexity) for functions on n Boolean variables. There are no average
case results known for such classes of functions. The only possibility is to consider
very small classes of functions where a complete case inspection is possible. Droste
et al. [2] have performed such considerations for diNerent complexity measures. For
all non-trivial situations considered they have proved that there is no NFL theorem.
However, the advantages of the better algorithms are small (also because of the small
sets A and B). This has led to the claim that there is at least a “free appetizer” in
restricted black box optimization.

4. An ANFL theorem

Knowing a restriction on the complexity of the considered function breaks the total
symmetry of the input space. This allows a free appetizer, i.e., algorithms using the

136 S. Droste et al. / Theoretical Computer Science 287 (2002) 131–144

given information in a better way are better than other ones. However, knowing that
a function can be evaluated in linear or quadratic time gives not much information
to direct the search. There are functions which are very easy to evaluate but hard for
black box optimization. We later discuss such functions, among them functions known
as “needle in a haystack”. Moreover, the Ctness functions of many hard optimization
problems are easy to evaluate. Hence, we conjecture that restricted black box opti-
mization does not allow much more than a free appetizer. Such conjectures are hard
to formalize and general “free lunch” theorems in restricted black box optimization
cannot be proved with nowadays available methods. Therefore, we have to be satisCed
with less ambitious results.
Let H be a randomized strategy which is e)cient for some function f : {0; 1}n→

{0; 1; : : : ; N − 1}. The expected runtime is bounded by a (small) polynomial and/or the
probability that H Cnds an optimal input for f within a small number of steps is very
close (exponentially close) to 1. We describe a set of functions f∗ : {0; 1}n→{0; 1; : : : ;
N} such that the success probability of H on f∗ is exponentially small even for some
exponentially increasing bound on the runtime. The number of these functions is in-
creasing double exponentially. Finally, it is proved that the complexity of exponentially
many of these functions is only by a small amount larger than the complexity of f.
Randomized search heuristics do not recognize whether they have found a solution

of the optimization problem. They use some external stopping criterion. Hence, we
may consider H without a stopping criterion and, therefore, H is running forever.
We investigate the Crst 2n=3 steps of H working on f. For a∈{0; 1}n let q(a) be
the probability that H evaluates f(a) during its Crst 2n=3 steps. This time restriction
implies ∑

a∈{0;1}n
q(a)6 2n=3:

We partition {0; 1}n into the 22n=3 disjoint subspaces Sb; b∈{0; 1}2n=3, where Sb
contains all a∈{0; 1}n such that ai= bi; 16i62n=3. Let q∗(b) be the probability that
H evaluates at least one f(a); a∈ Sb, during its Crst 2n=3 steps. Since

q∗(b)6
∑
a∈Sb

q(a);

the pigeonhole principle implies the existence of some b∗ such that

q∗(b∗)6
2n=3

22n=3
= 2−n=3:

We even may conclude that for a fraction �(n) of all b the inequality q∗(b)6(1 −
�(n))−1× 2−n=3 holds (MarkoN inequality).
Let f∗ be one of the at least N 2n=3−1 (and, therefore, double exponentially many)

functions f∗ deCned in the following way. Let f∗(a):=f(a) if a
∈ Sb∗ and the only
restriction for f∗ on Sb∗ is the existence of some a∗ ∈ Sb∗ such that f∗(a∗)=N .
A search heuristic can distinguish two functions f and f∗ only by evaluating f and
f∗ for some a where f(a)
=f∗(a). Before such a point of time H works on f as on
f∗. This implies for the search heuristic H the following.

S. Droste et al. / Theoretical Computer Science 287 (2002) 131–144 137

With a probability of at least 1 − 2−n=3 the search heuristic H faced with f∗ does
not evaluate some point a∈ Sb∗ during its Crst 2n=3 steps. Hence, its success probability
is bounded above by 2−n=3. This also implies that it will not gain much from multistart
options.
Most of the functions f∗ are hard to evaluate and need large representation size and

long descriptions. This already follows by counting arguments, since the number of
functions f∗ is double exponentially increasing. In order to describe f∗ it is su)cient
to describe f, b∗, and the function f∗ restricted to Sb∗ . For the function f∗ restricted to
Sb∗ we now allow only choices of functions which are easy with respect to evaluation
time, representation size, and KolmogoroN complexity. There are exponentially many
functions f∗ which only take zeros on Sb∗ with the exception of a∗ ∈ Sb∗ where the
Ctness value equals N . There are also exponentially many functions on Sb∗ where
the Ctness value is N minus the Hamming distance to the chosen a∗ ∈ Sb∗ . These
functions are easy to evaluate: we only need to decide whether a∈ Sb∗ or not and then
we evaluate f if a
∈ Sb∗ or f∗ if a∈ Sb. Circuits and other representation types may
realize such a case inspection and the KolmogoroN complexity grows at most by an
additive term of O(n) for the description of b∗, a∗, and some extra information.

Theorem 2 (Almost No Free Lunch (ANFL) theorem). Let H be a randomized
search strategy and f : {0; 1}n→{0; 1; : : : ; N − 1}. Then there exist at least N 2n=3−1

functions f∗ : {0; 1}n→{0; 1; : : : ; N} which agree with f on all but at most 2n=3 inputs
such that H does /nd the optimum of f∗ within 2n=3 steps with a probability bounded
above by 2−n=3. Exponentially many of these functions have the additional property
that their evaluation time, circuit size representation, and Kolmogoro3 complexity is
only by an additive term of O(n) larger than the corresponding complexity of f.

It is obvious that we get better bounds on the success probability if we decrease the
number of available steps and vice versa. However, in order to ensure that diNerent
functions f and g lead to diNerent functions f∗ and g∗ which are pairwise unequal
we have to consider functions f and g which diNer for at least 2× 2n=3 + 1 inputs.
The ANFL theorem implies that a search strategy has to pay for its success for some

functions f with its bad behavior on many functions which are not much more complex
than f. Hence, each search strategy bears some intuition in mind how functions for
optimization look like. One such assumption is that inputs a with large f(a) are most
likely close to other inputs with large f-values.
We discuss some simple applications of the ANFL theorem. The constant function

fn(a)= 0; a∈{0; 1}n, is simple for each search heuristic. The functions HAYn; b : {0; 1}n
→{0; 1} deCned by HAYn; b(b)= 1 and HAYn; b(a)= 0 if a
= b are known as “needle in
a haystack” functions and are assumed to be di)cult for all search heuristics. The
proof of the ANFL theorem implies that each search heuristic fails on most of the
haystack functions. A search strategy which does not start searching at quite random
points can be e)cient for some HAY functions.
Everybody expects that a search heuristic e)ciently Cnds the optimum of ONEMAXn(a)

= ‖a‖1:=a1+ · · ·+an. This has been proved for all typically used search heuristics. We
expect that ONEMAXn gives enough hints to increase the number of ones. The function

138 S. Droste et al. / Theoretical Computer Science 287 (2002) 131–144

TRAPn diNers from ONEMAXn only on the all zero string 0n which is optimal for TRAPn,
since TRAPn(0n):=n + 1. This function is claimed to be di)cult for search heuristics.
However, this statement works in a one shot scenario and has to be wrong. A search
heuristic may start by evaluating the function 0n. Whitley [17] has discussed for each
search heuristic H the variant H∗ deCned by the following rule. If H evaluates f
on a, then H∗ does the same for a and its bitwise complement Ra. If H is e)cient
on ONEMAXn then H∗ is e)cient (losing at most a factor of 2) on TRAPn. It is more
meaningful to consider the class of trap functions TRAPn; b where TRAPn; b(b)= n+1 and
TRAPn; b(a)=ONEMAXn(a) if a
= b. The proof of the ANFL theorem implies that each
search heuristic fails on most of the trap functions. This proves that Whitley’s idea
only helps in very special situations.
For certain classes of search heuristics the same conclusions have been proved with-

out the ANFL theorem which, nevertheless, makes the arguments clearer and which
treats the more general situation.

5. A non-arti&cial and simple function which is hard for simulated annealing and
evolutionary algorithms

Functions like the needle in a haystack or the trap functions have short descriptions
and are easy to evaluate. However, we do not expect to be faced with such functions
in real-life optimization. These functions are artiCcial. The interesting property of these
two classes of functions is that for each search heuristic there are many of them which
are hard to maximize. In other words, for each search heuristic many of these functions
are giving misleading or no hints. There is no function which is misleading for all
search heuristics. Nevertheless, we claim that each needle in the haystack function and
each trap function TRAPn; b where ‖b‖16(1− �)n for some Cxed �¿0 is misleading for
all frequently used search heuristics. Indeed, it is not di)cult to prove this for a long
list of search heuristics.
However, we are more interested in a non-artiCcial and simple function with such

properties. Later we present a function which is a polynomial of degree 3 with a short
description, which is an instance of one of the best-known maximization problems
(implying, that it is non-artiCcial), and which is claimed to be di)cult for all frequently
used search heuristics. We shall prove this conjecture for simulated annealing and
evolution strategies.
Before we present the special function we investigate the behavior of these search

heuristics on a class of functions which should be easy for all reasonable search heuris-
tics. These considerations can be applied later to show the bad behavior on our example
function.
A function f : {0; 1}n→N is called symmetric if f(a) depends on a only via ‖a‖1,

the number of ones in a. A symmetric function is called decreasing if ‖a‖1¡‖b‖1
implies f(a)¿f(b). We expect that a reasonable search strategy quickly Cnds the
only optimal input 0n for such functions.

Hypothesis 1. For each reasonable search heuristic H, each �¿0, and each sequence
f=(fn) of symmetric decreasing functions there are some �; �¿0 such that the

S. Droste et al. / Theoretical Computer Science 287 (2002) 131–144 139

probability that H tests among the /rst exp(o(n�)) search points one point a where
‖a‖1¿(12 + �)n is bounded above by exp(−T(n�)).

This rather technical hypothesis has a simple informal description. A symmetric
decreasing function gives only hints to look for individuals with a small number of
ones. By ChernoN’s inequality [6] the fraction of search points a where ‖a‖1¿(12 +�)n
is bounded above by exp(−�2n=3). Hence, random search running for exp(�2n=6) steps
has a probability of at most exp(−�2n=6) to test such a search point. “Reasonable”
search heuristics should have even a smaller chance of looking for such points, since
all hints lead into the other direction. We do not deCne the term reasonable. We
think of all search heuristics which have no a priori preference of search regions,
which prefer to base their search more on evaluated search points with a high f-value
(Ctness-based selection), and which prefer to look at nearer (Hamming) neighbors.
Since in this general setting, the claim can only be falsiCed, we have not called it
conjecture but hypothesis. However, the hypothesis can be proved for speciCc search
heuristics. This is very easy for simulated annealing and more di)cult for evolution
strategies.

Theorem 3. The hypothesis for search heuristics on symmetric decreasing functions
holds for simulated annealing for the parameters �=1 and �=1.

Proof. Simulated annealing starts with a randomly chosen input a. The probability that
‖a‖1¿(12+�=2)n is bounded above by exp(−�2n=12). Then simulated annealing chooses
a random Hamming neighbor a′ of a and accepts it with probability 1 if ‖a′‖1¡‖a‖1
and accepts it with some probability pf(a; a′) if ‖a′‖1¿‖a‖1. The chance of reaching
a search point with at least (12 +�)n ones is maximized for pf(a; a

′)= 1. Since we start
with at most ‖a‖16(12 + �=2)n ones in order to reach some b where ‖b‖1¿(12 + �)n,
there has to be a time period t where we start with a point a′ with (12 + �=2)n ones,
end with a point b′ with (12 + �)n ones and Cnd in between only points with more
than (12 + �=2)n ones. For such points the probability that a random neighbor has a one
more is at most 12 − �=2. Hence, we overestimate the probability to reach the level of
points with (12 + �)n ones if we assume that we start at level (12 + �=2)n and that the
probability of increasing the number of ones in one step equals 1

2 − �=2.
We consider a time interval of length t and Bernoulli trials with success probability

1
2 − �=2. We are interested in the probability of at least t=2+ �n=4 successes (implying
at most t=2 − �n=4 missuccesses). This event is necessary and su)cient to reach the
level with (12 + �)n ones from the level with (12 + �=2)n ones. The expected number
of successes equals t=2 − �t=2. If t6�n=4, it is impossible to have at least t=2 + �n=4
successes. If t ¿ �n=4, the probability of at least t=2 successes can be bounded by
ChernoN’s bound by exp(−T(t))6 exp(−T(n)).
For a time bound T = exp(o(n)), we have at most T 2 = exp(o(n)) time intervals

and the success probability for each interval is exp(−T(n)). Hence, the total success
probability is still exp(−T(n)).

140 S. Droste et al. / Theoretical Computer Science 287 (2002) 131–144

In order to investigate evolution strategies, we have to describe this class of search
strategies. An evolution strategy works with populations of some Cxed polynomial
size whose members are initialized randomly and independently. New individuals are
created by mutation from old individuals. Mutation is driven by a probability p. If the
individual x is chosen for mutation, each bit is Uipped independently with probability p.
If y diNers from x at d positions, the probability that y is obtained from x by mutation
equals pd(1 − p)n−d. The idea of mutation is to produce randomly small changes.
Hence, p6 1

2 (usually p is much smaller than 1
2).

Selection is the possibly randomized process to determine the members of the next
generation. Let yold1 ; : : : ; yoldm be the members of the old generation and let z1; : : : ; zk be
the children produced from yold1 ; : : : ; yoldm by mutation. The selection process is allowed
to depend on these individuals only via their Ctness values and the property whether
the individual is a child or a parent. The main property of selection is that the chance
of individuals to be chosen is positively correlated with the Ctness. More precisely, if
f(x)¿f(x′) and either x and x′ are children or x and x′ are parents, the individual x
has at least the same chance as x′ to be chosen. Often the same is true if x is a child
and x′ is a parent. There may be rules to prevent duplicates.
Selection is also the process to choose individuals for mutation. This is done in the

same way as described above with the only exception that only the members of the
last generation are available.

Theorem 4. The hypothesis for search heuristics on symmetric decreasing functions
holds for all evolution strategies for �= �= 1

2 .

Proof. We Cx an evolution strategy by choosing the population size S = S(n), the
mutation probability p=p(n), and the selection scheme. For a point of time t= t(n) we
ask for the “success” probability p∗=p∗(n), namely the probability that an individual
with at least (12 + �)n ones has been produced. Since we are interested in (small) upper
bounds on p∗, we may change the MarkoN process describing the behavior of the
evolution strategy in such a way that the success probability increases. The idea is to
obtain a MarkoN process which is easier to handle.
Selection is only based on the Ctness of the individuals (and the property whether an

individual is a parent or a child) and mutation works on single individuals. Moreover,
the Ctness function is symmetric. Hence, we can replace each individual with s ones
by the string 0n−s1s without inUuencing the success probability.
It is easy to analyze the initialization step. By ChernoN’s bound the probability that a

random individual (as created in the initialization phase) has at least (12 + �=2)n ones is
bounded above by exp(−�2n=12). Since S(n) is polynomially bounded, the probability
that at least one individual of the Crst generation has at least (12 +�=2)n ones is bounded
above by exp(−T(�2n)). If some individual with at least (12 + �=2)n ones is produced
in the initialization phase, we consider this as a success of the algorithm. Hence, we
assume in the following that no individual of the Crst generation has at least (12 +�=2)n
ones.
Informally, we believe that the individual I =0n−s1s is better for our optimization

task than I ′=0n−s′1s
′
, if s¿s′. Formally, we prove that for I it is at least as likely to

S. Droste et al. / Theoretical Computer Science 287 (2002) 131–144 141

obtain by mutation a string with at least s′′ ones as for I ′. For this reason we compare
I and I ′:

Mutation works in the same way on the Crst n − s bits and the last s′ bits. In-
dependently from this, mutation Uips each of the s − s′¿0 bits in the middle part
independently with probability p. Since p6 1

2 (this assumption is essential here), the
probability of Uipping at most d bits is at least as large as Uipping at least (s− s′)−d
bits.
The Ctness function is decreasing with the number of ones. Then Ctness-based selec-

tion only can prefer individuals with less ones. By the statement above, we conclude
that we can assume, without loss of generality, that selection does not depend on the
Ctness of the individuals.
By our statement on mutation, we only increase the success probability by replacing

each individual with less than (12 + �=2)n ones by an individual with exactly (12 + �=2)n
ones.
In the last step, we consider the situation that the algorithm produces an individual

I∗ with at least (12 + �)n ones. This individual has a history (such a history-based ap-
proach has been used for the Crst time by Rabani et al. [12]), i.e., there is a sequence
I0; I1; : : : ; I∗ of individuals such that I0 belongs to the initial population and Ii+1 is pro-
duced from Ii by mutation. By assumption ‖I0‖1 = (12 + �=2)n; ‖Ii‖1¿(12 + �=2)n, and
‖I∗‖1¿(12 +�)n. We consider the subsequence starting with the last individual with ex-
actly (12 +�=2)n ones. This sequence is denoted (after renumbering) by I0; I1; : : : ; It∗ = I∗

where ‖I0‖1 = (12 + �=2)n; ‖Ii‖1¿(12 + �=2)n for i¿0, and ‖It∗‖1¿(12 + �)n. Because
of the second property individual Ii is produced by mutation from Ii−1 and not by
mutation followed by a replacement as described above.
The strings I0; I1; : : : ; It∗−1 altogether contain at least (12 + �=2)nt∗ ones and at most

(12 − �=2)nt∗ zeros. We like to estimate the probability that starting with I0 we get an
individual It∗ which is a success. All single bits of all Ii; i¡t∗, have a chance to be
mutated. The mutation probability is p. It is a necessary condition that altogether at
least n�=2 more bits are Uipping from 0 to 1 than bits are Uipping from 1 to 0.
For such a success, it is necessary that at most nt∗p=2 ones Uip or that at least

nt∗p=2 zeros Uip. For constant p¿0, we can estimate the probability of both events
(by ChernoN’s bounds) by exp(−T(nt∗p)). If p=T((t∗n1=2)−1), this probability is
exponentially small. If p=O((t∗n1=2)−1); nt∗p=2=O(n1=2). In this case, we use the
fact that at least �n=2 zeros have to Uip. Again, by ChernoN’s bounds, this probability
is bounded by exp(−T(n1=2)). If the algorithm produces exp(o(n1=2)) individuals, the
success probability still is bounded by exp(−T(n1=2)).
Corollary 1. Let f be a function which equals a symmetric decreasing function on
all inputs a where ‖a‖1¡(12 + �)n and which has the property that ‖b‖1¿(12 + �)n

142 S. Droste et al. / Theoretical Computer Science 287 (2002) 131–144

for all optimal points b. Then the probability that simulated annealing or an evolu-
tion strategy /nds the optimum of f within exp(o(n1=2)) steps is bounded above by
exp(−T(n1=2)).

Proof. As long as a search heuristic does not evaluate the considered function on an
input with at least (12 + �)n ones, it cannot distinguish f from symmetric decreasing
functions. Hence, the corollary follows from Theorems 3 and 4.

Finally, our example function will fulCll the assumptions of Corollary 1 for �= 1
6 . It

is an instance of one of the best known NP-equivalent optimization problems namely
the MAXSAT problem. For reasons of completeness, we deCne all necessary notions.
A literal is a Boolean variable xi or a negated Boolean variable Rxi. A literal is satisCed
by an assignment or input a=(a1; : : : ; an) if its Boolean value equals 1. A clause is a
disjunction (Boolean OR) of some literals, i.e., a clause is satisCed by an input a iN at
least one of its literals is satisCed. An instance of the MAXSAT problem is speciCed
by a sequence of clauses c1; : : : ; cm over the variables x1; : : : ; xn and the task is to Cnd
an input satisfying simultaneously as many clauses as possible.
The following instance of MAXSAT has been presented by Papadimitriou [10]. It

consists of n clauses of length 1 and n(n − 1)(n − 2) clauses of length 3 each, more
precisely the clauses
• xi; 16i6n, and
• xi ∨ Rxj ∨ Rxk ; (i; j; k)∈{1; : : : ; n}3; i
= j
= k
= i.
All clauses of this special instance have exactly one positive literal. Such clauses

are called Horn clauses and correspond to typical database queries. Altogether, this
example function is a non-artiCcial instance of a well-known problem and has a simple
description. Moreover, it is easy to optimize for humans. The reader will Cnd out in a
second that the all one string 1n is the only one to satisfy all clauses. Nevertheless, a
popular randomized search heuristic developed especially for MAXSAT needs expected
exponential time for this instance [10]. The same can be proved for the algorithm due
to [14] which is the best known for MAXSAT (with respect to expected worst case
time).
In order to apply Corollary 1 we translate the MAXSAT instance into a polynomial

COUNTn : {0; 1}n→N which counts the number of satisCed clauses. It is easy to verify
that

COUNTn(a)=
∑

16i6n
ai +

∑
16i6n

∑
16j6n; j 	=i

∑
16k6n
k 	=i; k 	=j

(1− (1− ai)ajak):

The description of the MAXSAT instance proves that COUNTn is symmetric. Hence,
we like to describe COUNTn by a function COUNT∗n : {0; : : : ; n}→N such that COUNTn(a)
=COUNT∗n(‖a‖1). Let s= ‖a‖1. Then

COUNT∗n(s) = s3 − (n+ 1)s2 + (n+ 1)s+ n(n− 1)(n− 2);
since

(1− (1− ai)ajak) = 1− ajak + aiajak

S. Droste et al. / Theoretical Computer Science 287 (2002) 131–144 143

and

COUNTn(a) =
∑

16i6n
ai + n(n− 1)(n− 2)− 2(n− 2) ∑

16j¡k6n
ajak

+6
∑

16i¡j¡k6n
aiajak

= s+ n(n− 1)(n− 2)− 2(n− 2)
(
s
2

)
+ 6

(
s
3

)

= s+ n(n− 1)(n− 2)− (n− 2)s2 + (n− 2)s+ s3 − 3s2 + 2s
=COUNT∗n(s):

Finally, it follows by standard arguments that COUNT∗n is decreasing for all s where
06s¡(2=3)n. Hence, Corollary 1 can be applied for �= 1

6 .

Corollary 2. The probability that simulated annealing or an evolution strategy /nds
the optimum of COUNTn within exp(o(n1=2)) steps is bounded above by exp(−T(n1=2)).

The function COUNTn cannot be optimized e)ciently by any search heuristic fulClling
the stated hypothesis and, therefore, we assume that no “reasonable” search heuristic
is e)cient for COUNTn.

6. Conclusions

The NFL theorem is a simple theorem ruling out statements that some search heuris-
tics have some advantage on the average of “all” functions. However, the NFL scenario
is not a realistic one. For realistic black box scenarios, in particular those deCned by
some restrictions on the complexity of the considered functions, NFL theorems will not
hold, but at least a free appetizer is possible in some situations. The ANFL theorem
proves that one cannot expect much by well-chosen heuristics in complexity restricted
black box scenarios. Search heuristics implement a guess on the class of functions
they are confronted with. If the guess is correct, they can be much better than other
search heuristics using other guesses. However, there are simple non-artiCcial func-
tions where some frequently used search heuristics can be proved to need exponential
time with overwhelming probability and where it is conjectured that this holds for all
“reasonable” search heuristics.

References

[1] J.C. Culberson, On the futility of blind search: an algorithmic view of no free lunch, Evol. Comput.
6 (2) (1998) 109–127.

[2] S. Droste, T. Jansen, I. Wegener, Perhaps not a free lunch but at least a free appetizer, in: W. Banzhaf,
J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela, R.E. Smith (Eds.), Proc. Genetic and
Evolutionary Computation Conf. (GECCO ’99), Morgan Kaufmann, San Francisco, 1999, pp. 833–839.

[3] D. Fogel, Evolutionary Computation: Toward a New Philosophy of Machine Intelligence, IEEE Press,
Piscataway, NJ, 1995.

144 S. Droste et al. / Theoretical Computer Science 287 (2002) 131–144

[4] F. Glover, M. Laguna, Tabu search, in: C. Reeves (Ed.), Modern Heuristic Techniques for Combinatorial
Problems, ScientiCc Publications, Oxford, 1993.

[5] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley,
Reading, MA, 1989.

[6] T. Hagerup, C.R. RVub, A guided tour of ChernoN bounds, Inform. Process. Lett. 33 (1989) 305–308.
[7] D.S. Hochbaum, Approximation Algorithms for NP-Hard Problems, PWS Publishing Company, Boston,

MA, 1996.
[8] M. Li, P. VitWanyi, An Introduction to Kolmogorov Complexity and its Applications, Springer, Berlin,

1993.
[9] R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge University Press, Cambridge, 1995.
[10] C.H. Papadimitriou, Computational Complexity, Addison-Wesley, Reading, MA, 1994.
[11] C.H. Papadimitriou, K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Dover,

Englewood CliNs, NJ, 1998.
[12] Y. Rabani, Y. Rabinovich, A. Sinclair, A computational view of population genetics, Random Struct.

Alg. 12 (4) (1995) 314–334.
[13] N. RadcliNe, P. Surry, Fundamental limitations on search algorithms: evolutionary computing in

perspective, in: J. van Leeuwen (Ed.), Lecture Notes in Computer Science, Vol. 1000, Springer, Berlin,
1995.

[14] U. SchVoning, A probabilistic algorithm for k-SAT and constraint satisfaction problems, in: Proc. 40th
Ann. IEEE Symp. on Foundations of Computer Science (FOCS ’99), IEEE Press, Piscataway, NJ, 410
–414.

[15] H.-P. Schwefel, Evolution and Optimum Seeking, Wiley, New York, 1995.
[16] P. van Laarhoven, E. Aarts, Simulated Annealing: Theory and Practice, Kluwer Academic Publishers,

Dordrecht, 1987.
[17] D.L. Whitley, Permutations, in: T. BVack, D.B. Fogel, Z. Michalewicz (Eds.), Handbook of Evolutionary

Computation, C1.4, Institute of Physics Publishing and Oxford University Press, Bristol, New York,
1997, 1–8.

[18] D. Wolpert, W. Macready, No free lunch theorems for optimization, IEEE Trans. Evol. Comput. 1 (1)
(1997) 67–82.

	Optimization with randomized search heuristics---the (A)NFL theorem, realistic scenarios, and difficult functions
	Introduction
	A generalized NFL theorem
	More realistic scenarios for black box optimization
	An ANFL theorem
	A non-artificial and simple function which is hard for simulated annealing and evolutionary algorithms
	Conclusions
	References

