
GA or GP? That is not the question.
John R. Woodward

School of Computer Science
The University of Birmingham

B15 2TT UK
J.R.Woodward@cs.bham.ac.uk

Abstract-
Genetic Algorithms (GAs) and Genetic Programming

(GP) are often considered as seperate but related fields.
Typically, GAs use a fixed length linear representation,
whereas GP uses a variable size tree representation.
This paper argues that the differences are unimportant.
Firstly, variable length actually means variable length
up to some fixed limit, so can really be considered as
fixed length. Secondly, the representations and genetic
operators of GA and GP appear different, however ulti-
mately it is a population of bit strings in the computers
memory which is being manipulated whether it is GA or
GP which is being run on the computer.

The important difference lies in the interpretation of
the representation; if there is a one to one mapping be-
tween the description of an object and the object itself
(as is the case with the representation of numbers), or a
many to one mapping (as is the case with the representa-
tion of programs). This has ramifications for the validity
of the No Free Lunch theorem, which is valid in the first
case but not in the second. It is argued that due to the
highly related nature of GAs and GP, that many of the
empirical results discovered in one field will apply to the
other field, for example maintaining high diversity in a
population to improve performance.

1 Introduction

1.1 Evolutionary Computation

Evolutionary Computation (EC) is an umbrella term cover-
ing GAs, GP, Evolutionary Strategies and Evolutionary Pro-
gramming. While each of these areas are related, there are
differences [BNKF98, DFS97]. The arguments presented in
this paper can be applied to each of these areas in an attempt
to unify the field rather than have it fragment. We will be
concerned with GAs and GP.

Standard GAs use a fixed length linear representation
and makes heavy use of crossover. Usually the represen-
tation is binary but higher arity alphabets have been used.
In contrast, GP uses a variable length tree structure, how-
ever like GAs, GP also makes heavy use of crossover. Here
only linear and tree structures are considered, but other rep-
resentations have been used including graph based repre-
sentations.

Recently there has been some debate within the GAs and
GP communities regarding the relationship between GAs
and GP. Mitchell [Mit96] (page 269) states “GP is a variant
of GAs in which the hypothesis being manipulated are com-
puter programs rather than bit strings”. Ultimately com-
puter programs are essentially bit strings so this distinction
is not clear. Langdon [LP02] (in the preface) state “since GP
is more expressive than GAs, it (GP theory) can be viewed
as a generalization of GAs theory”. Whether GP is a gen-
eralization of GAs or not will depend on how the bit strings
are interpreted. Reeves and Rowe [RR02] (page 2) are more
cautious in their introduction stating that they do not want
to give the impression that other areas of EC are unimpor-
tant to GAs theory. Banzhaf et. al. [BNKF98] also describe
some of the differences. What is certain is that it is unclear
what the exact differences are.

In order for a field to advance a framework is required
with which to work. Part of a framework is the terminol-
ogy used, and getting the terminology correct is an essen-
tial part of the process. It is clear that GAs and GP are
related as they are both inspired by Darwinian evolution.
It is also clear that GAs and GP are regarded as seperate
fields. They have seperate conferences and seperate text
books [BNKF98, Gol89, Koz92, Mit96]. (Though many re-
searchers in one field may attend conferences in the other
field and publish in both fields). While accurate classifica-
tion is important, over fragmentation can mean that related
areas become separated, and this will have a detrimental ef-
fect on the progress of both fields.

1.2 The Terms GAs and GP

In a sense the terms GAs and GP are misleading. GAs do
not necessarily represent the evolution of algorithms, but
rather a subset of all possible algorithms. GP typically does
not evolve computer programs as we would expect, but typi-
cally logical or mathematical expressions are evolved, or if
then type rules of a classifier system. Real world human
produced programs often involve the use of iteration and
memory which has not been fully explored in GP [Woo03].

1.3 Is it GA or is it GP?

Consider the following general scenario. A population of
fixed length bit strings are evolved using the process of
selection followed by mutation and crossover (one point

crossover and uniform crossover). The fitness of an individ-
ual bit string in the population is given by some cost func-
tion which, given a bit string, returns a real value. This test
and generate cycle is iterated until some termination condi-
tion is met. This general scenario could even be considered
as the definition of GAs: the individuals in the population
are fixed length bit strings and (for the sake of argument)
the crossover rate is high compared to the mutation rate.

Now, if the cost function is interpreting the bit string as
a computer program and the value returned reflects the per-
formance of the program at a particular task, one would be
inclined to say we have been describing a GP system. (For
example the bit strings could be fed into a Universal Turing
Machine). This senario would appear to blur the distinction
between GAs and GP.

In a seminal paper, Cramer [Cra85] evolved programs
first as bit strings but comments on the epistatic nature and
moves to a tree based representation. The question is per-
haps not what the representation is (i.e. a bit string or a tree)
but rather the interpretation of the representation.

1.4 Outline of Paper

The outline of the paper is as follows. In sec. 2 the appar-
ent differences between GA and GP are discussed. In sec.
3 a fundamental difference is pointed out between the rep-
resentation of number and programs is considered, and in
sec. 4 the implications of this regarding No Free Lunch are
considered. Following this there is a discussion in sec. 5
and a summary in sec 6.

2 Apparent Differences

While there are no strictly agreed upon definition about
what GAs and GP are, there are some fundamental differ-
ences. Firstly we look at the issue of fixed or variable length
representation, and then the issue of the representation (bit
strings or trees). Finally the operators used to move around
the corresponding search spaces are considered.

2.1 Fixed and Variable Length

Possibly the greatest distinction between GAs and GP is that
of fixed or variable length. In some cases, the size of the
required solution sought may be known beforehand, for ex-
ample the traveling salesman problem, where the problem
is to find the shortest route listing all cities. Clearly any
proposed path must include all cities once and only once.
However, there are many problems where it is difficult to
prespecify the size of the solution. Clearly, if we know the
size of the solution we do not need to use a variable length
representation as this would make the search space larger.

Usually a maximum depth or size of tree is imposed in
GP to avoid memory overflow (caused by bloat). During a

run, the size of trees tends to increase and this needs to be
controlled. Even if an upper limit on the size of a tree is not
imposed, there is an effective upper limit which is dictated
by the finite memory of the machine on which the GP is
being executed. So in reality, GP has variable size up to
some limit.

There is no reason why the size of a bit string in GAs
cannot vary during the evolution. Both crossover and muta-
tion operators, which operate on fixed length structures, can
be engineered into operators which produce variable length
bit strings.

Conversely, with GP there is no reason why fixed size
GP cannot be implemented. For example, when crossover
selects points in different parents, crossover can only take
place if the subtrees that are to be exchanged are of the same
size. This guarantees that each program retains its original
size (thought its shape will change). This could be called
’fixed size GP’ This is very similar to one point crossover
(described in [LP02]), except that the same crossover point
does not need to be chosen in both of the parents.

It may in some cases be confusing to talk about fixed
or variable length representations. Consider a binary repre-
sentation of integers. All 01, 001, 0001 represent the value
one. This is a variable length representation, however all
the leading 0’s are effectively redundant. But if we consider
a fixed length of e.g. 4 bits, this encompasses all the bit
strings just mentioned. Hence when evolving binary rep-
resentations of integers, it is effectively a variable length
representation up to some fixed limit as leading 0’s do not
contribute and can be ignored.

Huelsburgen [Hue96] evolves an assembly type lan-
guage where the individuals are of fixed length, however he
includes a ’NOP’ operation (’no operation’) which effec-
tively does nothing. This makes an apparently fixed length
representation into a variable length one (with some fixed
upper bound). If we look at ’fixed size GP’ (defined above)
there will in general be subbranches which will not con-
tribute to the overall output of the tree, whether or not there
is an explicit ’NOP’ operation. A subtree may never be ex-
ecuted, for example, we could have and if then else
statement which is always true so the else branch is never
executed. Subbraches which do not contribute are called in-
trons and are unavoidable in evolution. Hence an apparently
fixed length representation is effectively variable length up
to some fixed limit. There is no truly variable length repre-
sentation, they are only variable up to some fixed limit.

2.2 Representation

The representation and the genetic operators used to manip-
ulate the representation are central to the success of a search
algorithm. The landscape metaphor, often used to explain
the search process, is defined by which points in the search

space are connected to which other points. The connectiv-
ity is defined by the representation and the genetic operators
(see chapter 2 [LP02]).

In GAs, the mutation of bit strings takes the form of flip-
ping a single bit. Two main crossover operators have been
used; uniform crossover uniformly selects a bit from each
position from one of the two parents, one point crossover
selects a point at random along the genome of two parents
and takes the left part of parent one and combines this with
the right part parent two. In GP, mutation takes the form
of replacing a randomly selected sub tree in a program with
a randomly generated sub tree. Crossover swaps randomly
selected sub trees of two programs. There are of course
other more sophisticated operators, each of which has their
success and failures.

The operators used to move around these two search
spaces seem very different, but ultimately it is bit strings
being manipulated in the computers memory (see figure 1).
GAs can be thought of as manipulating bit strings in their
primitive form. GP however manipulates tree structures,
and while it may not be initially obvious what is happen-
ing at the bit level, this is indeed what is happening. It is
possible to design GP operators which perform the same op-
erations on bit strings and are therefore equivalent to GAs.
(These operators will look very different from the traditional
operators but there is no reason why we should restrict our-
selves to the traditional operators). Tree structures map to
bit strings, so we can apply operations at the tree level and
map these to bit strings and can therefore interpret opera-
tions on trees as operations on bit strings.

A good example of this is the work by Banzhaf et. al.
[NB95], who evolves computer programs by directly ma-
nipulating the bits at the machine level. The motivation for
this work is to avoid the interpretation stage standard GP
has to go through.

2.3 Genetic Operators

One important potential difference between GA and GP is
the effect of crossover. In GA, the crossover operators can
move genetic material from either of the parents, but usually
places it in the same location in the child (i.e. the position of
the gene in the genotype is not altered by crossover). Thus
crossover does not move the location of a bit within a bit
string. (There is of course no reason why this should be
the case unless the interpretation of the bit string does not
allow this). The crossover operator in GP typically moves a
subtree from one parent to a different location in the child.
In GP, subtrees can be interpreted anywhere in the overall
tree. A GP crossover operator has been proposed which
preserves the location of any subtree crossed over. The same
randomly selected crossover point in two parents is chosen
and therefore the crossed over subtrees will have the same

abaaabababababbaa

high level representation

000001110101100010101

low level representation (stored in computers memory)

01100101010101010101

GAGP

Figure 1: GA (on the right) uses a string representation
which is stored in a computer as a bit string. In general, the
actual bit string stored in memory will be different to the
actual string (which may be constructed from an alphabet
with more symbols) which the GA is manipulating. GP (on
the left) uses a tree based representation which is ultimately
stored in memory as a bit string. GP can be thought of as
GAs as GP is the evolution of bit strings in the computers
memory.

location in the offspring as they did in the parents [LP02].

3 Numbers or Programs

In this section a fundamental difference between the repre-
sentation of numbers and programs in pointed out. There
are many ways to represent numbers, however typically
there is a one to one mapping between the representation
and the number being represented. With programs (be they
classifier systems, artificial neural networks, finite state ma-
chines or Turing Complete programs) there is a many to
one mapping between the representation and the program
being represented. This difference has consequences when
searching the space. If the mapping between the represen-
tation and the object being represented is one to one, a uni-
form sampling of the representation will lead to a uniform
sampling of the objects being represented. If the mapping
between the representation and the object being represented
is a many to one mapping, a uniform sampling of the repre-
sentation will lead to a non uniform sampling of the objects
being represented.

3.1 Numbers

If our aim is to optimize a function, we typically choose
some way to represent numbers which are input to the func-
tion. (For the sake of argument let the function inputs be
positive integers). In GA common representations are bi-

nary and grey scale. These are both one to one represen-
tations, a number has only one bit string corresponding to
it and vice versa. Typically there is a one to one mapping
between the bit strings GA evolves and what they represent
(in this case numbers) [LP02] (page 194). In practice the
distinction between genotype and phenotype is blurred due
to this one to one mapping between description and object
being described [RR02] (page 20). Note that an even sam-
pling of bit strings translates to an even distribution of the
integers which are represented.

One could use GP to optimise a function. A popula-
tion of trees, which represent numbers, could be evolved
to search the space. For example, given a function set

�
+, -, * � and a terminal set

��� � the space of integers could
be explored. (Typically in a GP the terminal set consists of
variables from the problem, but there is no reason why num-
bers cannot be used). Unlike the case of GAs, each number
can be represented many ways. For example, the value 2
could be + 1 1 or * + 1 1 1 (i.e. 1*1 + 1) among others.
Hence there is a many to one mapping between the space of
trees and the space of numbers. We also point out that this
mapping is not uniform. If the space of trees is uniformly
sampled this will lead to a non uniform sampling of the in-
tegers represented. (Note that it is not suggested that this
is an efficient way to optimise a function, it is just used to
illustrate one of the differences between GA and GP).

If we know nothing about the function we are trying to
optimise then clearly we should choose a one to one rep-
resentation of numbers. It would require a very specialist
knowledge of the function to favour a many to one repre-
sentation over a one to one representation.

3.2 Programs

The general problem of program induction involves finding
a program on which the error score on a set of test cases is
zero (or within some tolerance limit). The set of test cases
defines the problem. Each program receives a score based
on its performance on the test cases, hence each program
maps to an error score. The representations used here could
be of many forms, for example classifier systems, logical or
mathematical expressions, artificial neural networks, finite
state automata or computer programs (the list is not exhaus-
tive).

For each of these representations GA could be used to
evolve the representation. Fixed length bit strings could be
used to represent any of these forms and evolved in the stan-
dard way. For example bit string could be used to represent
the weights in an artificial neural network [Mit96, Yao99].
Computer programs could be represented as bit strings fed
into a Universal Turing Machine. GP could be used to rep-
resent logical expressions, given a function set of logical
operators. GP could also be used to represent computer pro-

space of bit strings space of integers value of cost function

01

00

10

11 3

2

1

0

f(3)

f(2)

f(0)

f(1)

genotype phenotype

Figure 2: There is a problem independent one to one map-
ping between bit strings (left ellipse) and integers (middle
ellipse). There is a mapping between the space of integers
(middle ellipse) and the function values (right ellipse) which
depends on the problem. This mapping may be one to one
or many to one depending on the problem. Over all prob-
lems NFL.

grams as trees.
However, irrespective of whether GA or GP is used there

will always be a many to one mapping between the descrip-
tion and the object being described. In some cases it may
be possible to determine if two instances of a representation
are equivalent before they are executed. For example, an
algorithm exists that determines if two finite state automata
are equivalent [HU79] (page 64). An important question
is to determine if it is better to execute the programs on the
test cases or determine if they are equivalent using some an-
alytic technique. If the programs being evolved are Turing
Complete it is impossible to determine if two programs are
equivalent (due to Rice’s Theorem [HU79]page 185).

In general the mapping from programs to the functions
they compute is a non-uniform many to one mapping. If
a uniform sample of the representation is taken this will
map to a non-uniform distribution over the functions the
programs represent. (Essentially simple program will have
many descriptions and more complicated programs will
have fewer descriptions). Langdon [Lan99] has investigated
the distribution of functionality with varying program size.
Using either enumeration or sampling techniques, he plots
the frequency that a function is represented. The conclu-
sion is that above some threshold, the distribution of per-
formance is independent of program length. Simple visual
examination of these graphs reveals that these distributions
are non-uniform.

4 No Free Lunch

The No Free Lunch theorem (NFL) is a central theorem in
search which is often taken to mean all search algorithms
perform equally over all problems. (see [SVW01, WN03]).
This section first introduces the idea of the theorem, then

goes on to examine it in the context of a one to one and a
many to one mapping between representation and the ob-
jects being represented. NFL is valid in the case of a one to
one mapping. However when there is a non uniform many
to one mapping between representation and the objects be-
ing represented it is suggested that NFL is not valid. With
GA, either situation can occur, however the second situation
is always the case with the representations used in GP.

4.1 No Free Lunch

Let � and � be finite sets and ��������� be a function
where 	�
��������
�� . � is the domain and � is the range. The
size of D is � ��� and the size of R is � ��� . Each value in D
maps to a single value in R. For a given D and R there are
� ����� ��� possible functions (see figure 4).

A search operator and a search algorithm are taken to be
the same and represent any algorithm that produces a search
vector. A search vector V is an ordered sequence of points
in � ; ��� �!�#"%$&��'($*)+)*)*$&��,.- . It is assumed that no point is
revisited. The /�021 element in this vector corresponds to the
/3021 point visited. A complete search vector is any vector
that lists all points in � once and only once and has length
� ��� . There are � ���54 distinct complete search vectors. We are
not concerned with how the search vectors are generated.

A search vector corresponds to a path in � . A given
search vector and function will produce a corresponding
path in � . Let us call this sequence of points in � a per-
formance vector. A search vector of length 6 corresponds to
a performance vector of length 6 , given a specific function.

In [SVW01] four equivalent statements of NFL are dis-
cussed, the third is stated here;

Theorem NFL: Every search algorithm generates pre-
cisely the same collection of performance vectors when all
functions are considered.

4.2 One to One Representations

There are a number of examples of representations where
the mapping between the representation and the object be-
ing represented is one to one. Perhaps the most familiar
is that of bit strings and numbers. A general situation is
shown in figure 2. The ellipse on the left shows the space
of bit strings (of length 2 in this case). Each of these bit
strings maps onto a non-negative integer in the ellipse in the
centre. This mapping is one to one and is problem inde-
pendent. The mapping between the space of non-negative
integers and the cost function � is problem dependent (in
fact � is the definition of the problem). Here each point in
the ellipse on the right is shown as a separate point, but in
general these values could be the same or different. NFL is
valid between the space of integers and the space of the val-
ues of the cost function if all cost functions are considered.
NFL is valid between the space of bit strings and the space

space of bit strings value of cost function

01

00

10

11 f(3)

f(2)

f(0)

f(1)

genotype phenotype

Figure 3: Often in GAs the mapping between genotype (bit
strings) and phenotype is one to one. The distinction is
blurred and the bit strings are directly mapped to function
values. This is shown by removing the central ellipse which
is the interpretation stage. NFL is valid between the space
of bit strings (left ellipse) and the space of values of the cost
function (right ellipse).

f1 f2

f3 f4

d1 d1

d1d1

d2

d2 d2

d2

r1

r1 r1

r1

r2

r2 r2

r2

Figure 4: All possible functions between two sets which
only contain two points are shown.

of the values of the cost function if the mapping between bit
strings and integers is one to one and all cost functions are
considered.

As the mapping between bit strings and integers is so
trivial, (we could even call it transparent), it is often for-
gotten and this is where the blurring between genotype and
phenotype occurs. This is shown in figure 3 where the
bit strings are translated directly into values returned by the
cost function. In fact in some cases the problems are even
considered to be a function of the bit strings themselves
([RR02] Appendix A).

Figure 4 shows all possible functions between two sets
which, in this case only contain two points each. Let us
illustrate NFL by simply listing all the performance vec-
tors for all of these functions. There are only two possible
search vectors �7"8�9���:";$<�='>- and �?'@�A�!�='($&�:"*- . Let us
consider all of the functions ��"%$&�%'($&�%B($&�>C . �D" produces the

+

+

+

+

Fa()

Fb()

F2a()

F2b()

Fab()

a

b b

b

b

a

a

a

b

a

error(Fa)

error(Fb)

error(F2a)

error(F2b)

error(Fab)

space of trees space of functions

phenotypegenotype

space of error scores

Figure 5: There is a problem independent many to one map-
ping between trees (left ellipse) and the functions they rep-
resent (middle ellipse). There is a mapping between the
functions they represent (middle ellipse) and the function
values (right ellipse) which depends on the problem. Due to
the non uniform nature of the mapping between these spaces
(the left ellipse and right ellipse), not all functions exist and
NFL is not valid.

performance vectors � 	;"%$<	+'+- , �!	>";$2	%"*- , � 	�'($<	+'>- , and � 	�'($<	>"*-
respectively. �?' produces the performance vectors � 	%'($<	>" - ,
� 	>";$2	%"*- , �!	+'�$2	�'+- , and � 	%"%$<	+'>- respectively. By inspection
we can see that the same collection of performance vectors
is produced by each of the search vectors.

4.3 Many to One Representations

In GP, the mapping between the genotype and phenotype is
always many to one. A familiar example is function regres-
sion where, for a given function and terminal set, there are
many ways to express the same function. Consider a func-
tion set given a function set

�
+ � and a terminal set

� � $ � �
and trees up to a maximum size of 3. All possible trees (six
in total) are shown in the left ellipse of figure 5. This set
of trees maps onto a set of possible functions listed in the
central ellipse. The mapping between the space of trees and
the space of functions they represent is independent of the
problem and depends only on the function and terminal set.
The mapping between these two sets is many to one and
is non-uniform. All functions are represented once except
the function ��� � which is represented twice (by the trees��� �

and
� ���). No test, based on the functionality of

these two trees, will differentiate them as they are function-
ally equivalent, i.e. for all inputs they will produce the same
output. The mapping between the space of functions (cen-
tral ellipse) and the cost function ��	>		�>	#�) � (right ellipse) is
problem dependent. In fact ��	>		�>	:�2) � is the problem itself
(defined by the test cases). Typically, the values this func-
tion returns is called the error score in GP. The actual values

+

+

+

+

a

b b

b

b

a

a

a

b

a

space of trees space of error scores

genotype phenotype

Figure 6: In GP there is a many to one mapping between
the representation and what is being represented. A tree
is interpreted as a function which recieves and error score.
Due to this interpretation stage, not all functions between
the space of trees and space of error scores exist. NFL is
not valid.

returned by the cost function will depend on the test cases.
Here each point in the ellipse on the right is shown as sep-
arate points, but in general these values could be the same
depending on the cost function �+	>		�>	#�) � . NFL is valid be-
tween the space of functions (central ellipse) and the space
of the values of the cost function (right ellipse) if all cost
functions are considered. However, NFL is not valid be-
tween the space of trees (left ellipse) and the space of the
values of the cost function (right ellipse) due to the non-
uniform many to one mapping between these spaces.

To illustrate this, let us consider an example. Imagine
a search algorithm,
 , which visits the trees in the search
space in the following order: � � � $ � $ � $ ����� $ � �� $ ��� � $
and a second search algorithm, � , which visits the
trees in the search space in the following order:��� � $ � � � $ � $ � $ ����� $ � �� $. With
 , each of the first five
trees represent a different functionality, and only the last
tree (��� �) represents a duplicate functionality (the same as
the first tree visited). With � , the first two trees it visits
(��� � $ � � �), both have the same functionality and cannot be
distinguished. If the problem requires us to find a tree with
functionality ��� � , both
 and � visit such a tree with their
first visit. However, for any other function,
 will always
visit a tree that performs a function before � . Thus over all
problems,
 will outperform � .

As the mapping between trees and functions is non-
trivial, it requires an interpretation stage. Each function is
mapped to by many different trees. An impossible situation
is shown in figure 6 where each tree receives a different
value by the cost function. The trees ��� � and � � � must
map to the same error score, which invalidates NFL.

T1

T2

T3

E1

E2F2

F1 T1

T2

T3

E1

E2F2

F1

T1

T2

T3

E1

E2F2

F1 T1

T2

T3

E1

E2F2

F1

Function 1 Function 2

Function 3 Function 4

Figure 7: The space of trees � maps to the space of func-
tions � which maps to the space of error scores � . The
mapping between the space of trees is fixed. All possible
functions between space of functions � and the space of
error scores � are shown.

Figure 7 shows all the mappings that are possible be-
tween a set of trees to a set of functions then onto a set
of error scores. In this example, tree �" has function-
ality � " , tree � ' has functionality � ' and tree � B has
functionality � " . This is a fixed mapping. All possi-
ble mappings between the space of functions, � , and the
space of error scores � is shown. Let us illustrate that
NFL does not hold in this case by simply listing all the
performance vectors for all of these cases. There are
6 possible search vectors but we only need to consider
two to show that there are differences. Consider � " �
��� ">$��D'($��7B*- and �?' � ��� "%$��7B;$��7'*- . � " produces the perfor-
mance vectors ��� "%$���';$�� "+- , ��� "%$�� ">$�� " - , ����'($���';$���'+- ,
����'�$�� "%$���'>- respectively. �?' produces the perfor-
mance vectors ��� "%$�� ">$���'>- , ��� "%$�� ">$�� " - , ����'($���';$���'+- ,
����'�$���'($�� "+- respectively. By inspection we can see that
different collections of performance vectors are produced
by the two search vectors. This difference is due to the many
to one mapping between the descriptions of functions (i.e.
trees) and the functions they represent.

5 Discussion

NFL is a central theorem in search. This paper suggests
that NFL is not valid for the representations used in GP due
to the non-uniform many to one mapping between the de-
scription of an object and the object itself. The majority
of representations used with GA are one to one (and there-
fore uniform) between the description of an object and the
object itself. The many to one problem of the genotype to
phenotype mapping is discussed in [Yao99] in the context
of evolving artificial neural nets. Essentially any permuta-
tion of hidden nodes produces a neural net with the same

functionality.
GA and GP are largely studied empirically. General ob-

servations made about one may apply to the other as they
are so highly related. For example in [RR02] (page 59) a
number of guidelines are given to improve the performance
of a GA. These suggestions include using an incremental
approach to selection rather than a generational approach
and maintaining a high diversity in the population. Due to
the highly related nature of GAs and GP, we suggest that
most of these recommendations (if not all!) will apply to
GP.

This paper has concentrated on GA and GP, however
there are other paradigms also included within EC, namely
Evolutionary Programming (EP) and Evolutionary Strate-
gies (ES). It is suggested for similar reasons that separating
EP and ES from other fields is detrimental to the develop-
ment of EC as a whole.

6 Summary

GAs and GP are considered related but different algorithms.
GAs use fixed length bit strings as their representation, GP
uses variable length trees as theirs. The differences between
GAs and GP are discussed; the representation, fixed or vari-
able length genotype and the genetic operators. It is sug-
gested that these differences are unimportant. Whether we
are considering GAs or GP, whatever the high level repre-
sentation is, it will ultimately be stored in the computer’s
memory as a bit string. GP uses a variable length represen-
tation, but an imposed finite upper limit essentially makes it
a fixed length representation. The genetic operators used in
GA and GP appear different, GA operators usually do not
move the location of the gene within the genotype. However
there is no reason why this should be the case. Conversely,
GP operators may move the location of a subtree to a differ-
ent location, but again there is no reason why this should be
the case.

The important difference lies in the interpretation of the
representation, whether it is a one to one mapping between
the description and the object being represented, or a many
to one mapping between the description and the object be-
ing represented. The difference between these two types of
mappings is discussed in the context of number and pro-
grams. It is due to this many to one mapping that NFL is
invalidated.

In GAs the mapping between the description and the ob-
ject being represented may be one to one or many to one.
In GP the mapping between the description and the object
being represented is always many to one and non uniform.
GA or GP, that is not the question. What is the question is
what type of representation we are dealing with.

7 Acknowledgments

I wish to thank James Foster.

Bibliography

[BNKF98] Wolfgang Banzhaf, Peter Nordin, Robert E.
Keller, and Frank D. Francone. Genetic Pro-
gramming – An Introduction; On the Automatic
Evolution of Computer Programs and its Ap-
plications. Morgan Kaufmann, dpunkt.verlag,
January 1998.

[Cra85] N. L. Cramer. A representation for the adap-
tive generation of simple programs. In Interna-
tional Conference on Genetic Algorithms and
Their Applications., pages 183–187, July 1985.

[DFS97] Kenneth De Jong, David B. Fogel, and Hans-
Paul Schwefel. A history of evolutionary com-
putation. In Thomas Back, David B. Fogel, and
Zbigniew Michalewicz, editors, Handbook of
Evolutionary Computation, pages A2.3:1–12.
Institute of Physics Publishing and Oxford Uni-
versity Press, Bristol, New York, 1997.

[Gol89] David E. Goldberg. Genetic Algorithms in
Search, Optimization & Machine Learning.
Addison-Wesley, Reading, MA, 1989.

[HU79] JE Hopcroft and JD Ullman. Introduction to
Automata Theory, Languages, and Computa-
tion. Addison-Wesley, Reading, Massachusetts,
1979.

[Hue96] Lorenz Huelsbergen. Toward simulated evolu-
tion of machine language iteration. In John R.
Koza, David E. Goldberg, David B. Fogel, and
Rick L. Riolo, editors, Genetic Programming
1996: Proceedings of the First Annual Confer-
ence, pages 315–320, Stanford University, CA,
USA, 28–31 1996. MIT Press.

[Koz92] John R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natu-
ral Selection. MIT Press, 1992.

[Lan99] William B. Langdon. Scaling of program fitness
spaces. Evolutionary Computation, 7(4), 1999.

[LP02] W. B. Langdon and Riccardo Poli. Foun-
dations of Genetic Programming. Springer-
Verlag, 2002.

[Mit96] Melanie Mitchell. An Introduction to Genetic
Algorithms. Complex Adaptive Systems. MIT-
Press, Cambridge, 1996.

[NB95] Peter Nordin and Wolfgang Banzhaf. Evolv-
ing turing-complete programs for a register ma-
chine with self-modifying code. In L. Es-
helman, editor, Genetic Algorithms: Pro-
ceedings of the Sixth International Confer-
ence (ICGA95), pages 318–325, Pittsburgh, PA,
USA, 15-19 1995. Morgan Kaufmann.

[RR02] Colin R. Reeves and Jonathan E. Rowe. Ge-
netic Algorithms - Principles and Perspectives
A Guide to GA Theory. Kluwer, 2002.

[SVW01] C. Schumacher, M. D. Vose, and L. D. Whit-
ley. The no free lunch and problem description
length. In Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO-
2001), pages 565–570, San Francisco, CA
94104, USA, 7-11 July 2001. Morgan Kauf-
mann.

[WN03] J. R. Woodward and J. R. Neil. No free
lunch, program induction and combinatorial
problems. In Genetic Programming, Proceed-
ings of EuroGP 2003, Essex, UK, 14-16 apr
2003. Springer-Verlag.

[Woo03] Woodward. Evolving turing complete represen-
tations. In Congress on Evolutionary Computa-
tion, 2003.

[Yao99] X. Yao. Evolving artificial neural networks.
IEEE: Proceedings of the IEEE, 87:1423–1447,
1999.

