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In this article, we analyze the returns distribution of Hedge Funds strategies, the average returns obtained
over the past ten years and their correlation with a traditional portfolio. The aim is to identify the
characteristics of each Hedge Fund investment strategy in order to be able to construct an optimal Hedge
Fund portfolio for a Swiss pension fund. We will show that the classical linear correlation and the
classical linear regression cannot be applied for Hedge Funds. Moreover, we will show that only three
strategies, Convertible Arbitrage, Market Neutral and CTA, give diversification during market downturns.
The techniques used are non-linear regressions and local correlations.
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An Analysis of Hedge Fund Performance Using Loess Fit Regression

Introduction

Previous research has questioned the use of simple linear regression models in
describing the return relationship between hedge funds and the comparison asset
market. In brief, while hedge fund may show evidence of diversification benefits over
most market environments, various hedge fund strategies have shown to offer differing
diversification benefits conditional on the performance of the stand alone stock and
bond markets. In this paper the relationship between various hedge fund strategy returns
and a Swiss based benchmark portfolio. Using a statistical methodology which captures
non-linear relationships between the hedge fund strategy and the benchmark portfolio,
we  show that measuring the diversification benefit of investing in a Hedge Fund with
the classical linear correlation coefficient is misleading.1

Hedge Fund Strategies

Hedge Fund indices differ widely in purpose, composition and weightings. The
major differences relate to management staffing, performance determination and
strategies. In the following section, we briefly analyze the most important investment
strategies:

Convertible Arbitrage: involves purchasing a portfolio of convertible securities,
generally convertible bonds and hedging a portion of the equity risk by short-selling the
underlying common stock. Some managers may also seek to hedge interest rate
exposures under certain circumstances. Most managers employ some degree of
leverage, ranging from zero to 6:1.

Merger Arbitrage: funds invest simultaneously in long and short positions in both
companies involved in a merger or acquisition. In stock swap mergers, the Hedge Funds
are typically long the stock of the acquired company and short the acquiring company.
In the case of a cash tender offer, the Hedge Funds are seeking to capture the difference
between the tender price and the price at which the acquired company is traded. Profits
are made by capturing the spread between the current market price of the target
company and the price to which it will appreciate when the deal is completed. The risk
is that the deal fails.

Emerging markets: funds invest in securities of companies or the sovereign debt of
developing or “emerging” countries. This style is more volatile not only because
emerging market are more volatile than developed markets, but because most emerging
markets allow for only limited short selling and do not offer a viable futures contract to
control risk. This suggests that Hedge Funds in emerging markets have a strong long
bias.

Equity hedge: investing consists of a core holding of long equities hedged at all times
with short sales of stocks and/or stock index options. The short position has three
purposes. First, it is intended to generate alpha as well. Stock selection skill for short
stocks can result in doubling the alpha. An equity hedge manager can add value by
buying winners and selling losers. Second, the short position can serve the purpose of
hedging market risk. Third, the manager earns interest on the short position.
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Equity non-hedge: funds are predominately long term equities, although they have the
ability to hedge with short sales of stocks and/or stock index options. The leverage is
created by borrowing money or by using derivatives. Some strategies focus on long
stock index futures or buying stocks, using them as collateral to borrow money (50%)
which is then reinvested in more stocks.

Event driven: also known as “corporate life cycle” investing. This involves investing in
opportunities created by significant transactional events, such as spin-offs, changes in
ownership, bankruptcies, reorganizations, share-buy-backs and recapitalizations. The
securities prices of the companies involved in these events are typically influenced more
by the dynamics of the particular event than by the general appreciation or depreciation
of the debt and equity markets.

Market Neutral: seek to profit by exploiting pricing inefficiencies between related
equity securities, neutralizing exposure to market risk by combining long and short
positions. Market neutral portfolios are designed to be either beta-neutral, currency-
neutral or both.

Fixed Income: groups all strategies together, which can be performed with fixed
income instruments like arbitrage, convertible-, diversified-, high yield- and mortgage
bonds.

Macro: involves leveraged bets in liquid market on anticipated stock market price
movements, interest rates, foreign exchange and physical commodities. They pursue a
base strategy such as long/short or "future trend following" to which highly leverage
bets in other markets are added a few times each year. They move from opportunity to
opportunity and from trend to trend. Macro funds make their money by anticipating a
price change early and not by exploiting market inefficiencies.

Short selling: involves the sale of a security not owned by the seller with the intention
of buying it back later at a lower price. In addition the short seller earns interest on the
cash proceeds from the short sale of stock. Given the extensive equity bull market, short
selling strategies have not done well in the recent past. Technically, a short sale does not
require an investment, but it does require collateral.

CTA: Commodity Trading Advisors are investing in commodity and financial  futures.
For example, two of the used techniques are long/short stock index futures based on
quantitative or technical trend following indicator with stop loss limit, or stock index
arbitrage. We include them in the analysis, even though they are not considered being
Hedge Funds by the practitioners.

Data and Methodology

HFR data was used as the basis for the analysis which covers the period January 1990
till June 1999, based on monthly observations. The comparison index is constructed as
the The LPP Index (BVG Index is the  constructed by Pictet & Cie (Geneva) and
represents the Benchmark Index for a Swiss institutional investor. Typically, this index
does not include more than 30% of the SPI, 25% of the MSCI, 20% of the Salomon
Brother Global Bond Index.)
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The following performance measures were obtained and are shown in Exhibit 1.

µ : monthly mean returns (=ln (R(t)/R(t-1)))
σ : monthly standard deviation
S : skewness 2

K : excess kurtosis 3

RMAX : maximum monthly returns over the period
RMIN : minimum monthly returns over the period
ρLPP, BVG 4: linear correlation coefficient between the hedge fund strategy and the LPP
Index

Exhibit 1
µ σ S K RMAX RMIN ρLPP

Convertible Arbitrage 0.92% 1.04 -1.46 3.18 3.3% -3.1% 0.44

Merger Arbitrage 1.00% 1.37 -3.21 13.7 2.9% -6.4% 0.46

Emerging Markets 1.36% 4.64 -1.16 4.31 12.3% -21.0% 0.59

Equity hedge 1.73% 2.36 -0.50 1.15 7.2% -7.6% 0.51

Equity non-hedge 1.66% 3.83 -0.82 1.79 9.5% -13.3% 0.59

Event Driven 1.35% 1.96 -1.78 7.34 5.1% -8.9% 0.61

Market neutral 0.87% 0.90 -0.09 0.55 3.5% -1.6% 0.07

Fixed income (Total) 0.98% 1.06 -0.58 6.05 5.3% -3.2% 0.49

Macro 1.59% 2.67 0.10 0.16 7.8% -6.4% 0.55

Short selling 0.22% 5.57 0.30 0.73 19.4% -16.2% -0.51

CTA 0.66% 2.76 0.44 0.35 10.0% -5.5% -0.16

First, all strategies achieve positive monthly mean returns. If we focus on a classical
information ratio (i.e. mean returns divided by the standard deviation), the worst
strategy is, by far, the short selling one, which is consistent with the stock market
behavior of the last ten years. The best one is the market neutral, mainly because of its
low level of standard deviation. If we look at the skewness and the kurtosis indicators,
we observe that almost all strategies have a negative skewness5 and a positive excess
kurtosis, except for the macro, short-selling and the CTA strategies. This means that
negative returns will deviate from normality, especially on the downside, except in the
case of the macro and short-selling strategies. The Merger Arbitrage is deviating the
most from normality, the skewness and the kurtosis being significant6. Finally, the
linear correlation with the LPP/BVG portfolio is an important indicator for the
investors. Many pension funds look for diversification benefits when they decide to
invest in alternative instruments. Therefore, asset allocation advisors construct a
portfolio with a low correlation level. With this objective in mind, the short selling,
Convertible Arbitrage, CTA and market neutral strategies are interesting. The short
selling strategy is an insurance, which some investors include in their portfolio. Like
any other insurances, it has a price. In this case, the price consists of two factors, firstly
the low level of return, at least when the markets of traditional instruments are bullish
and secondly, the high level of standard deviation shown by the short selling strategy. It
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is interesting to observe that portfolio insurance can also be achieved by buying some
put options, but not at the same costs and the same payoffs.

Loess Fit analysis

The objectives of this section are, firstly, to analyze the correlation between the LPP and
the HFR indices using a methodology, which takes into account the non-linear
relationship between both instruments and secondly, to analyze the payoff structure of
the HFR indices. The methodology being used is the local regression analysis.

We shall show that four HFR strategies7 out of nine result in concave payoffs as
compared to the LPP index. This means that the slope of the local regression decreases,
when the LPP index monthly returns are more positive. When LPP monthly returns are
more negative, the HFR monthly returns are getting negative at an even higher
proportional rate. Moreover, when the relation is statistically not linear between both
series (as in the four case cited above), the classical correlation coefficient correlation is
misleading and will, in the case of convexity relation, give a higher correlation during
market downturns.

In the next section, the Loess fit analysis is conducted on  ten hedge fund strategies and
determine which ones are adding diversification to a Swiss pension fund portfolio.

Results

A local regression analysis on 9 different HFR investment styles (included an equally
weighted Hedge Funds index) and the CTA strategy8 are conducted. For each style
selected, we also perform a Loess Fit analysis using a statistical software9. As noted
above a Loess Fit is a technique, which displays local polynomial regressions with the
bandwidth based on nearest neighbors. Briefly, for each data point in a sample, the
software fits a locally weighted polynomial regression. It is a local regression since it
uses only the subset of observations, which lies in the neighborhood of the point fitting
the regression model. By using this technique, we are able to fit the non-linear relation
between market returns and hedge funds returns. This technique increases the power of
explanation of the regression and describes the non-linear relation between the market
and each hedge fund.

We obtain a picture of local regressions between the LPP index and a hedge fund
investment strategy. This picture helps us to identify the way to do the regression, that
is, with the help of the standard linear regression, by means of a quadratic regression or
finally with aid of a polynomial third degree regression. The significance of the local
regressions10 is verified using the adjusted R2. The adjusted R2 gives us the explanatory
power of the local regression taking into account the number of independent variables.
In our case, the independent variable is always the LPP Swiss Index. Therefore, the
higher the adjusted R2, the more important the correlation between the LPP Swiss Index
and the HFR strategy becomes. Moreover, we show that the parameters of the non-
linear regressions are stable11 throughout time12.

HFR Weighted Composite Index (HFRWC) analysis

This index is an equally weighted index of all Hedge Funds based on the HFR database.
It is long biased. Exhibit 2 below shows the local regression obtained with the Loess Fit
technique. We observe that the payoff of the HFR Weighted Composite Index is
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concave compared to the LPP13 index. The straight line in Exhibit 1 corresponds to a
100% investment in the LPP index, considering that our reference asset is the LPP
index. Furthermore, Exhibit 2 suggests that the explanatory power of the linear
regression can be improved upon by using a quadratic regression.

Exhibit 214

Exhibit 2 shows that the HFRWC generates a slightly improved payoff, as compared to
the LPP index, between -4% and +2% monthly LPP index returns. The appendix shows
the result of a quadratic regression between the HFR weighted composite index and the
LPP index.

The explanatory power of the regression (ie. adjusted R2 =0.42) is good. It is equivalent
to a correlation coefficient of 0.65. According to the Chow test15, the coefficients of the
regression above are stable throughout the time period at 99%.

HFR Total Fixed Income Index (HFRFI) analysis

As mentioned by Fung and Hsieh (1999)16, the fixed income arbitrage strategy produces
stable returns with low dispersions17. They argue that Arbitrage Fixed Income managers
are not capturing mispricings, but that they sell economic disaster insurance. When the
market is quiet, the managers perform well and poorly in volatile markets. For example,
when the liquidity dried up in the months September, October and November 1998, the
HFR Total Fixed Income Index lost –3.1%, -1.8% and –3.2% respectively.

This fact is confirmed by Exhibit 3, where the slope for LPP returns below -1% of the
regression, dramatically increases.

Exhibit 3
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Based on Exhibit 2 and on the statistical Chow test, we performed two different
regressions: one regression for index returns between –5%/month and +0.5%/month and
another regression for index returns  between 0.5%/month and 4.5%/month. The first
regression has a quadratic form and the second a linear one with a slope of 0.2. A
significant quadratic regression, with an adjusted R2 of 47%, below a return of 0.5%,
means that the investor becomes more and more exposed, when the index returns turn
negative. This strategy can be seen as buying 0.2 LPP Indexes and selling put options
with strikes further and further out-of-the-money18.

The appendix shows the explanatory power of the first quadratic regression to be good
(47%). The correlation coefficient, considering only the negative returns, equals 0.69.

HFR Macro Index (HFRMA) analysis
The macro managers anticipate market movements by using top-down approaches.
Historically, they achieve high yearly returns. Furthermore, they argue that their
investments have low linear correlations with traditional instruments.

Exhibit 4 shows that, if there is a significant relationship, it should be a linear one. We
performed a linear regression between the HFRMA Index and the LPP index and found
a significant relationship with an adjusted R2 of 0.2919. The constant of the linear
regression is equal to 0.009 and the coefficient of the LPP index equals to 0.904. This
means that, by investing in a macro Hedge Fund, the investor will be exposed to 0.904
of the returns of the LPP index20.

Exhibit 3

HFR Market Neutral (HFRMN) analysis
By definition, this strategy should have a beta of zero with the market. The market
could be equity, bond, commodity, currency, real estate, private equity or markets. By
trading on the long and short sides, in theory, they should neutralize their exposure to
each of these different markets. We will show that this theoretical beta of zero, in a
linear regression, is valid only on the LPP negative side.

Exhibit 4 shows that the relation between HFRMN and the LPP Index is not defined.
When the LPP Index gets monthly returns higher than ~1.7%, the HFRMN Index gets
returns more and more smaller (all the part on the left of the straight line). When the
LPP Index returns are negative, the HFRMN Index performs very well and is always
positive.
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Exhibit 4

In order to see the relation between LLP pension fund index and Market Neutral
strategy, a regression to the power three is done.The appendix shows that the relation
between both indices is small (adjusted R2 = 1.2%). All the coefficients of the
regression to the power three are significant at 95%, as the absolute t-stat are higher
than 1.96.

In conclusion, this strategy provides really good diversification for a swiss pension fund
with a non-linear correlation of 0.11, no exposure at all on the downside, an annual
volatility of 3.2%21 and an historical annual return of 10%.

HFR Equity Non-Hedge (HFRNE) analysis
This strategy has similar features22 as the HFR Equity Hedge Index, from a statistical
point of view, except that the HFRNE return distribution is more dispersed.

Exhibit 5 shows the payoffs of the HFRNE index as compared to the LPP Index. By
using a polynomial third degree regression, the shape of the relation is concave for
negative LPP returns and convex for positive LPP returns. The slope of the concave
regression varies between 2.6 and 1.0. This means that for negative LPP Index returns,
each -1% in the former index leads to losses which are 2.6 times higher. On the other
hand, for positive LPP returns, it is possible to increase returns by investing in the
HFRNE-Index. So, the HFRNE-Index can be seen as a long position in the LPP-Index,
some long out-of-the money calls and some short out-of-the money puts.

Exhibit 5
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In the appendix, we show the relationship between both indices with a third degree
regression. The correlation coefficient of this regression is equal to 0.63. All the
parameters of this third degree regression are significant at 95%23.

These concave and convex payoffs can be explained by the managers investment
decisions. As the market drops, the manager incurs losses according to his long position
and to the leverage (ie. short puts finance the long calls). As the market rises, the
leverage of his position leads to very high returns.

The vision to invest in such a strategy is either very bullish or stable.

HFR Convertible Arbitrage Index (HFRCA) analysis
The managers following these strategies are arbitraging convertible instruments. Note
that this strategy is highly exposed to credit- and leverage risk.

In Exhibit 6, we rank the index returns (here the LPP) from the lowest negative to the
highest positive among the sample 1990-1999. Then, the corresponding HFRCA returns
are added. One can see that the HFRCA Index returns are more or less stable, despite a
few bad deals during market turmoils. There are only four negative months for the
HFRCA, which corresponds exactly with the worst LPP returns. Except for that, as
Exhibit 6 shows, the returns of the HFRCA are almost visually stable throughout time.

Exhibit 6
LPP Pictet Index vs HFR Convertible Arbitrage Index
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Exhibit 7 provides another view of the relationship between the two indices. The bent
line is a quadratic regression with a smooth coefficient of 0.9. When the bent line is
above the straight line, then in terms of returns, the investor will be better off buying the
HFRCA Index than by buying the LPP Index.
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Exhibit 7

When the LPP Index returns rise (straight line), then the HFRCA returns do not move in
the same manner (bent line). The exposure to negative LPP Index returns is low, since
the slope of a local regression with only negative LPP returns is less than 1. The results
in the appendix confirms the fact that a regression is not powerful. We obtain a
quadratic regression with an adjusted R2 of 0.2024. All the coefficients of the regression
are strongly significant. This leads to the conclusion that the relation between the LPP
Index and the HFRCA is concave (as shown in Exhibit 7), but the power of the relation
is poor.

HFR Event-Driven (HFRED) analysis
The managers using this strategy are investing in significant transactional events such as
spin-offs, bankruptcies, recapitalizations  and share buy-backs. The instruments used are
short and long stocks, debts and options. This will explain the strong significant non-
linear regression obtained thereafter.

The payoffs in Exhibit 8 indicate that a quadratic regression is not appropriate. The
relationship between both payoffs starts changing, when LPP monthly returns are above
2%.

Exhibit 8

As shown in the appendix the local regression between both indices is well explained
with a polynomial third degree regression. The adjusted R2 is equal to 0.46 and the
correlation coefficient is equal to 0.69, which gives a high explanatory power to the
regression. All the coefficients of the regression are significant at 95%, when the t-
statistic is higher than ±1.96. The regression coefficients of the LPP2 and LPP3 are high.
Their signs prove the increasing exposure to negative independent variable values.
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The parameters are not stable or consistent between the two chosen sub-samples25.
Nevertheless, the parameters of the two sub-sample regressions are near (ie. in terms of
the confidence interval) those obtained with a regression over all the samples.

HFR Merger Arbitrage (HFRMAR)
HFR Merger Arbitrage managers are investing in leveraged buy-outs, mergers and
hostile take-overs.

The ranked graph with respect to the LPP Index returns, in Exhibit 9, shows that the
returns of the HFRMAR Index are stable, despite three extremely negative returns. This
is due to the fact that this strategy is sensitive to important market shocks (liquidity
risk).

Exhibit 9
LPP Pictet Index vs HFR Merger Arbitrage Index
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The graph in Exhibit 10 shows a kind of concave relationship with a bump. The
explanation of the concave relationship is, that the managers invested in some mispriced
securities. If they prove to be wrong, the losses may be really high.

Exhibit 10

In order to fit above the relationship, a third degree regression is performed in the
apapendix. The coefficients are significant at 95% and the adjusted R2 is equal to 0.29.
Like Exhibit 10, the regression in the appendix shows that the returns of the HFRMAR
become more and more negative with respect to negative LPP Index returns.26
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Thus, this strategy is not to diversify the risks of a Swiss pension fund during strong
negative LPP returns.

HFR Short Selling (HFRSS) analysis
A priori, the HFR Short Selling strategy should pay-off when a global index like the
SP&500 or the MSCI have negative returns. This should be reflected, as well, through
the payoff of the LPP Index returns.

Exhibit 11 confirms that when the LPP Index records positive returns, the HFRSS Index
tends to have strong negative ones and inversely.

Exhibit 11
LPP Pictet Index vs HFR Short Selling Index
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The local regression is shown in the following graph (fig. 12). The relationship is linear
and negative. The dashed line represents a 100% investment in the LPP Index and the
straight line represents the investment in the HFRSS. In the CAPM, the beta of the
HFRSS, with respect to the LPP Index, would be around –1.7.

Exhibit 12
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The linear regression gives a power of explanation of 26% in the appendix. The
coefficients are significant at 99%. The linear relationship between both indices with a
slope of –1.76 is negative. Thus, the HFRSS can be seen as selling 1.76 futures on the
LPP Index27.

It is only interesting to invest in the short selling strategy, if traditional markets earn bad
returns. During positive LPP Index returns, this strategy shows a poor performance28.

CTA analysis
Besides the Hedge Funds managers, the Commodity Trading Advisors are investing in
futures too. To analyze this strategy, we use the Barclays CTA Index. This strategy is
also called 'Trend Following'. Fung and Hsieh (1999)29 analyzed this strategy and
concluded that it is similar to a lookback call and a lookback put30 on the SP&500. They
stress, however, that there exists no relations, in terms of R2, between the major indices
and CTA returns. We find exactly the same results between the LPP Index and the CTA
Index, as shown in Exhibit 13. Positive and negative CTA returns seem to occur
randomly along the sorted LPP returns.

Exhibit 13
LPP Pictet Index vs CTA Index
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Source: authors, Barclays Index.

The monthly mean return, for the period January 1990-June 1999, is equal to 0.67%
(8% per year)31. This is low when compared to the other Hedge Funds strategies. This
low monthly return could be explained by the price being paid for these low moving
correlations.

The local regression technique, in Exhibit 14 shows that the payoffs of the CTA can be
seen as equal to long puts OTM32 and short calls OTM. One sees as well, a really high
dispersion of the returns on both sides of the broken line. This tells us that it will be
difficult to find a relation between the CTA and the LPP Index.
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Exhibit 14

In order to find significant regression coefficients between the CTA and the LPP Index,
a third degree regression is carried out (see appendix). The power of the regression is
poor, as the adjusted R2 equals 5.3% and the correlation coefficient comes to 0.2533.
This result is different from the one obtained by Fung and Hsieh (1999)34 for two
reasons. Firstly, we use the LPP Index instead of the S&P500 Index, which they did.
Secondly, we are using end of month returns, instead of intra-month returns.

In conclusion, this strategy provides a good diversification, but low returns when
compared to the Hedge Funds strategies.

Conclusion
We have just seen that four out of ten Hedge Funds strategies35 have concave payoffs.
This is like selling options. Therefore, these strategies are capped, when high LPP36

returns occur. We have also seen that six out of ten have concave payoffs on the
downside37. We have also observed that diversification benefits tend to disappear in
case of extremely negative LPP Index returns, except in case of short-selling, market
neutral, CTA and convertible arbitrages.

Generally speaking positive LPP returns do not explain a lot about the Hedge Funds
strategies returns. This can be explained by the fact that the Hedge Funds managers
reduce their risks, when reaching a positive monthly return38. So a manager has to reach
a positive return level which he has set for himself. As long as he has not reached this
target return, he takes risks and is exposed to the underlying market, which in our case
is represented by the LPP Index.

Convertible Arbitrage strategy has a concave payoff with respect to the LPP index over
the period 1990-1999, with an average historical annual return of 11%. The slope of the
concavity is never higher than one which means that on the downside, the strategy will
never loose more than the market. Market Neutral strategy has almost no relation with
the LPP index over the same period. The strategy offers a good protection on the
downside with a historical annual return of 10.4%. The CTA strategy is like a negative
third degree regression with respect to the LPP Index (see Exhibit 14). This means that
the Swiss pension fund will have a negative correlation during negative LPP returns and
a negative correlation during positive LPP returns. The average historical annual return
is 8%
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Thus, by means of the payoff analysis, assuming that the investor is a Swiss pension
fund, only three strategies will give a diversification effect during market downturns39:
Convertible Arbitrage, Market Neutral and CTA. Other strategies are interesting in term
of risk-returns as soon as the market is not volatile. This is due to the fact that the
payoffs are similar to short option positions.

We would add Hedge Funds to a diversified Swiss pension fund portfolio under four
conditions:
- invest in Convertible Arbitrage, Market Neutral and CTA40

- diversify among Hedge Funds in order to decrease the volatility, negative skewness
and kurtosis and then test the Hedge Fund portfolio with the same techniques we
developed in this article
- combine equities, bonds and Hedge Funds in a portfolio by minimizing volatility,
skewness and kurtosis
- each Hedge Fund has followed a qualitative analysis



16

Appendix 1

Exhibit  1
Regression between HFR Weighted Index & LPP
HFR Weighted composite index = 0.011 + 0.784 * LPP - 10.638 * LPP^2
Sample: 1990:01 1999:06
Included observations: 114
Newey-West HAC Standard Errors & Covariance (lag truncation=4)

Variable Coefficient Std. Error t-Statistic Prob.

C 0.011517 0.001656 6.955799 0.0000
LPP 0.784128 0.084616 9.266952 0.0000
LPP^2 -10.63889 3.486322 -3.051609 0.0028

R-squared 0.433121     Mean dependent var 0.013725
Adjusted R-squared 0.422907  S.D. dependent var 0.019331
Sum squared resid 0.023937     Schwarz criterion -5.506000
Log likelihood 320.9463     F-statistic 42.40442

Exhibit  2
Regression between HFR Fixed Income & LPP
HFR Fixed Income  = 0.01 – 17.37 * LPP^2
From -5% to 0.5% LPP returns
Newey-West HAC Standard Errors & Covariance (lag truncation=3)

Coefficient Std. Error t-Statistic Prob.
LPP^2 -17.37522 1.794328 -9.683416 0.0000

R-squared 0.476186     Mean dependent var 0.005480
Adjusted R-squared 0.476186  S.D. dependent var 0.009996
Sum squared resid 0.002303     Schwarz criterion -6.957787

Regression between HFR Fixed Income & LPP
HFR Fixed Income  = 0.009 + 0.212 * LPP
From 0.5% to 4.5% LPP returns
Newey-West HAC Standard Errors & Covariance (lag truncation=3)

Coefficient Std. Error t-Statistic Prob.
LPP 0.212654 0.085554 2.485608 0.0154
R-squared 0.034381     Mean dependent var 0.012691
Adjusted R-squared 0.034381  S.D. dependent var 0.010161
Sum squared resid 0.006779     Schwarz criterion -6.328731

Exhibit  3
Regression between HFR Macro and LPP
HFR MACRO = 0.009 + 0.904 * LPP
Newey-West HAC Standard Errors & Covariance (lag truncation=4)

Variable Coefficient Std. Error t-Statistic Prob.

C 0.009544 0.002090 4.566153 0.0000
LPP 0.904237 0.097596 9.265064 0.0000

R-squared 0.303892     Mean dependent var 0.015918
Adjusted R-squared 0.297677 S.D. dependent var 0.026682
Sum squared resid 0.056003     Schwarz criterion -4.697588

Exhibit  4
Regression between HFR Market neutral & LPP
HFR Market neutral = 0.08 + 0.16 * LPP -141 * LPP^3
Newey-West HAC Standard Errors & Covariance (lag truncation=4)

Variable Coefficient Std. Error t-Statistic Prob.

C 0.008068 0.001036 7.784328 0.0000
LPP 0.163841 0.065820 2.489228 0.0143
LPP^3 -141.3928 59.27455 -2.385387 0.0188

R-squared 0.030264     Mean dependent var 0.008758
Adjusted R-squared 0.012792 S.D. dependent var 0.009033
S.E. of regression 0.008975     Akaike info criterion -6.562767
Sum squared resid 0.008941     Schwarz criterion -6.490762
Log likelihood 377.0777     F-statistic 1.732091
Durbin-Watson stat 1.714620     Prob(F-statistic) 0.181661
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Exhibit  5
Regression between HFR Non-Hedge & LPP
HFR Non-Hedge = 0.01 + 0.99 * LPP –17.84 * LPP^2 + 561.20 * LPP^3
Newey-West HAC Standard Errors & Covariance (lag truncation=4)

Variable Coefficient Std. Error t-Statistic Prob.

C 0.013383 0.003370 3.971117 0.0001
LPP 0.991887 0.277369 3.576055 0.0005
LPP^2 -17.84362 5.264458 -3.389451 0.0010
LPP^3 561.2039 222.0178 2.527743 0.0129

R-squared 0.412830     Mean dependent var 0.016654
Adjusted R-squared 0.396816  S.D. dependent var 0.038345
Sum squared resid 0.097556     Schwarz criterion -4.059469
Log likelihood 240.8621     F-statistic 25.77977

Exhibit  6
Regression between HFR distressed & LPP
HFR Distressed = 0.01 + 0.63 * LPP – 11.94 * LPP^2
Newey-West HAC Standard Errors & Covariance (lag truncation=4)

Variable Coefficient Std. Error t-Statistic Prob.

C 0.012651 0.001760 7.189650 0.0000
LPP 0.639249 0.083782 7.629914 0.0000
LPP^2 -11.94310 3.566228 -3.348945 0.0011

R-squared 0.306604     Mean dependent var 0.013432
Adjusted R-squared 0.294111  S.D. dependent var 0.019230
Sum squared resid 0.028975     Schwarz criterion -5.315008
Log likelihood 310.0598     F-statistic 24.54089

Exhibit  7
Regression between HFR Convertible & LPP
HFR Convertible Arbitrage = 0.008 + 0.300 * LPP –4.570 * LPP^2
Newey-West HAC Standard Errors & Covariance (lag truncation=4)

Variable Coefficient Std. Error t-Statistic Prob.

C 0.008528 0.000850 10.03619 0.0000
LPP 0.300530 0.044757 6.714636 0.0000
LPP^2 -4.570266 1.660964 -2.751575 0.0069

R-squared 0.222253     Mean dependent var 0.009221
Adjusted R-squared 0.208240  S.D. dependent var 0.010415
Sum squared resid 0.009533     Schwarz criterion -6.426711
Log likelihood 373.4268     F-statistic 15.85997

Exhibit  8
Regression between HFR Event driven & LPP
HFR Event driven = 0.01 + 0.53 * LPP –14.36 * LPP^2 + 298.93 * LPP^3
Newey-West HAC Standard Errors & Covariance (lag truncation=4)

Variable Coefficient Std. Error t-Statistic Prob.

C 0.013278 0.001820 7.294398 0.0000
LPP 0.530781 0.165153 3.213869 0.0017
LPP^2 -14.36354 3.396376 -4.229078 0.0000
LPP^3 298.9357 131.3550 2.275785 0.0248

R-squared 0.479332     Mean dependent var 0.013521
Adjusted R-squared 0.465132  S.D. dependent var 0.019568
Sum squared resid 0.022529     Schwarz criterion -5.525071
Log likelihood 324.4014     F-statistic 33.75569
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Exhibit  9
Regression between HFR Merger Arbitrage & LPP
HFR Merger Arbitrage = 0.01 –9.84 * LPP^2 +402.55 * LPP^3
Newey-West HAC Standard Errors & Covariance (lag truncation=4)

Variable Coefficient Std. Error t-Statistic Prob.

C 0.011753 0.001149 10.23296 0.0000
LPP^2 -9.847384 4.377615 -2.249486 0.0265
LPP^3 402.5515 114.0146 3.530700 0.0006

R-squared 0.312327     Mean dependent var 0.010004
Adjusted R-squared 0.299936 S.D. dependent var 0.013665
Sum squared resid 0.014511     Schwarz criterion -6.006502
Log likelihood 349.4749     F-statistic 25.20696

Exhibit  10
Regression between HFR Short selling & LPP
HFR Short selling = 0.014 – 1.76 * LPP
Newey-West HAC Standard Errors & Covariance (lag truncation=4)

Variable Coefficient Std. Error t-Statistic Prob.

C 0.014653 0.004484 3.267830 0.0014
LPP -1.763566 0.266439 -6.619030 0.0000

R-squared 0.265560     Mean dependent var 0.002220
Adjusted R-squared 0.259002  S.D. dependent var 0.055669
Sum squared resid 0.257196     Schwarz criterion -3.173147
Log likelihood 185.6056     F-statistic 40.49710

Exhibit  11
Regression between CTA & LPP
CTA = 0.007 – 398 * LPP^3
Newey-West HAC Standard Errors & Covariance (lag truncation=4)

Variable Coefficient Std. Error t-Statistic Prob.

C 0.007966 0.002388 3.335650 0.0012
LPP^3 -398.1878 115.8161 -3.438103 0.0008

R-squared 0.062217     Mean dependent var 0.006657
Adjusted R-squared 0.053844  S.D. dependent var 0.027613
Sum squared resid 0.080800     Schwarz criterion -4.331004
Log likelihood 251.6034     F-statistic 7.430565
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Appendix 2

We will show that the classical constant correlation coefficient underestimates the relation between two
assets as soon as the relation between them is no linear. This is often the case in Hedge Funds. We will
see 2 cases:
- a hedge fund which is exposed to volatility (ie. long only strategy) with payoffs
Y = X3 + ε
- a hedge fund which has convex payoffs (ie. long puts and long calls strategy) following

 Y = X2

- a hedge fund which has a concave or convex payoffs (ie. convertible arbitrage strategy) following
Y = aX2 + ε

where Y is a portfolio with options and X is a classical index. The returns of the index X follow a normal
distribution N(0,1).

The constant correlation between the two assets X and Y is given by
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The non constant correlation between the two assets X and Y is given by
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First case
The portfolio Y can be replicated with a long index X, short puts and long calls on the index X (see
Equity non-hedge strategy for a real example):

First let’s assume the relation is well defined, ε = 0. Thus
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As we have assumed that the process X follows a normal distribution (0,1) with no random term ε, the
constant correlation between a X and Y is 0.77.

From (2), we have assumed that the process Y is driven by Y = X3. Thus, the non constant correlation
between Y and X3 is

There is a full deterministic relationship between X and Y. The constant correlation measures only
the linear relation between the two process. This is why the constant correlation gives 0.77 and the
non-constant correlation is 1.
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Second case
Let’s take an example where the constant correlation is equal to zero and there is a deterministic
relationship between X and Y:

The constant correlation is equal to
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The constant correlation shows no relation between both distribution even though the Y asset is
depending on the X asset. This is due to the fact that the constant correlation "tries" to find linear relation
between X and Y. In this case, there is absolutely no linear relation between X and Y, but only a positive
quadratic relation.

Third case
Now, we will show that the relation between two stochastic processes with random terms cannot be
measured with the constant correlation coefficient. After a non-linear regression, one sees that the relation
between two processes X and Y is of the form

Assume a=1. The non-constant correlation between asset 2x and asset Y is equal to

Assuming the asset X is normally distributed N(0,1) for simplicity, the real correlation equals
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If ones computes the constant correlation coefficient between asset X 42and asset Y, one finds (always
assuming that a=1 and X ~ N(0,1))

Assuming the asset X ~ N(0,1) and 1, ≤ερ X . Thus,
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1 See appendix 2
2 The skewness measures the asymmetry of a distribution. A normal distribution has a skewness of zero.
3 The kurtosis measures returns which are highly positive or highly negative with respect to the other
returns. In other words, the kurtosis measures if the distribution has fat-tailed. A normal distribution has a
kurtosis of 3 and an excess kurtosis of zero.
4 The LPP Index or BVG Index is the Index constructed by Pictet & Cie (Geneva) and represents the
Benchmark Index for a Swiss institutional investor. Typically, this index does not include more than 30%
of the SPI, 25% of the MSCI, 20% of the Salomon Brother Global Bond Index.
5 A negative skewness implies that the distribution has a long left tail. Risk averse investor does not like
negative skewness.
6 Only the Macro, the Short Selling and the CTA strategies have a normal distribution based on the
Jarque-Berra statistics.
7 HFR Weighted Composite Index, HFR Fixed Income, HFR Convertible Arbitrage, HFR Event Driven
8 We have excluded Emerging markets which are not well defined in term of strategy, excluded Equity
hedge strategies which are similar to Equity non-hedge, but with lower volatility and lower kurtosis.
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9 For more information on local regression analysis, see Chambers, Hastie, Statistical models in S, 1992,
Chapter 8, Wadsworth & Brooks.
10 We use Newey-West regression, which adjusts for autocorrelation and heteroskedasticity.
11

12 To do that, the period January 1990-June 1999 is divided in two equal sub-periods. A Chow-test which
follows an F-distribution with 3 and 122 degrees of freedom is performed.
13 Remember that the LPP index is the index constructed by Pictet & Cie (Geneva) and represents the
benchmark index for a Swiss institutional investor. Typically, this index consists of not more than 30%
SPI, 25% MSCI, 20% Salomon Brother Global Bond Index, 100% Swiss bonds.
14 One interpretation of this graph is that the investor would have been better of investing in the Hedge
Fund Strategy, when the concave curve was situated above the flat line.
15 The Chow-test, which measures the stability of the regression between two sub-periods (ie. Jan.1990-
Sept.1994 and Oct.1994-June 1999), is equal to 3.06. The critical level of this Chow-test F(3,122) is 3.95
at 99%.
16 W.Fung, D.H.Hsieh, A primer on Hedge  Funds, March 1999, Working paper, Duke University.
17 The empirical Value-at-Risk at the 95% level for the HFR Fixed Income Arbitrage and for the HFR
Total Fixed Income is –2.58% and  -0.66% respectively.
18On average as the adjusted R2 is not equal to 100%.
19 Fung and Hsieh, 1999, A primer on Hedge Funds, found that the payoffs of the macro strategies can be
seen as a long position in the SP500, short calls in-the-money and long put positions. But they do not
provide a local linear coefficient in order to prove the statistical validity of their conclusions.
20 On average as the adjusted R2 is not equal to 100%.
21 The conversion between monthly and annual volatility is valid as the distribution of HFRMN is normal
(Jarque-Berra = 1.22).
22 i.e. in terms of mean and linear correlation.
23 The stability test of the parameters of the polynomial third degree expansion regression between two
sub-samples of equal size gives a Chow-test F(3,122) of 0.69. The critical F is equal to 3.95 at 99%. As
0.69<3.95, we cannot reject the hypothesis that the parameters are equal through time. The above
regression’s parameters are stable or consistent through time according to the Chow test.
24 The above regression’s parameters are stable or consistent through time according to the Chow test .
The stability test of the parameters of the quadratic regression between two sub-samples of equal size
gives a Chow-test F(3,122) of 0.72. The critical F is equal to 3.95 at 99%. As 0.72<3.95, we cannot reject
the hypothesis that the parameters are equal.
25 The stability test of the parameters of the quadratic regression between two sub-samples of equal size
gives a Chow-test F(3,122) of 5.09. The critical F is equal to 3.95 at 99%. As 5.09>3.95, we reject the
hypothesis that the parameters are equal through time.
26 The coefficient sign of the independent squared and power three variables are respectively  negative
and positive.
27 This is true under two conditions. Firstly the LPP can be replicated and secondly the LPP explains
100% of the HFRSS.
28 Remember, in table 3, the monthly average return of the HFRSS is equal to 0.22%. During the year
2000,  as the world market was negative in the course of the second part of the year, the HFRSS gained
4.8%.
29 W.Fung, D.A.Hsieh, 1999, A risk neutral approach to valuing trend following strategies, Duke
University, Working paper.
30 A lookback call is a normal call option but the strike depends on the minimum stock price reached
during the life of the option. A lookback put is a normal put option but the strike depends on the
maximum stock price reached during the life of the option.
31 In 2000, the CTA returns was –1.8% and 0.2% in 2001.
32 Out-of-the-money
33 Square root of 0.062.
34 They found a straddle payoff.
35 HFR Weighted Composite Index, HFR Fixed Income, HFR Convertible Arbitrage, HFR Event Driven
36 The LPP Index is the index constructed by Pictet & Cie (Geneva), which represents the benchmark
index for a Swiss institutional investor. Typically, this index consists of not more than 30% SPI, 25%
MSCI, 20% Salomon Brother Global Bond Index.
37 Same as four above, but add HFR Equity Non-hedge, HFR Merger Arbitrage
38 See Brown, Goetzmann, Park, 1997
39 for annual returns higher than 8%
40 CTA have shown a performance of 4.2% in 2000 and 1.9% in 2001, Convertible 25.6% in 2000 and
13.4% in 2001, Market Neutral 15% in 2000 and 7.8% in 2001 (source CSFB Tremont index).
41 Heinz Mueller, UBS
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