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The Futility of Bias-Free Learning

‘Even after the observation of the frequent conjunction of
objects, we have no reason to draw any inference concerning
any object beyond those of which we have had experience.’
Hume (1739–40)
Bias-free learning is futile (Mitchell, 1980; Schaffer, 1994;
Wolpert, 1996).
One can never generalise beyond one’s data without making
at least some assumptions.



No Free Lunch Theorem for Supervised Machine Learning

Wolpert (1996) showed that in a noise-free scenario where the
loss function is the misclassification rate, in terms of
off-training-set error, there are no a priori distinctions between
learning algorithms.
On average, all supervised machine learning algorithms are
equivalent (over all possible data sets).
There is no free lunch for Occam’s razor, overfitting avoidance
or cross validation (they cannot be justified from first
principles).
We should only constrain our models according to our prior
beliefs.
Extract as much domain knowledge as possible.
Carefully consider the assumptions being made.



Efficient Market Hypothesis

A market is efficient with respect to an information set if the
price ‘fully reflects’ that information set (Fama, 1970).
Efficient if the price would be unaffected by revealing the
information set to all market participants (Malkiel, 1992).
The definitional ‘fully’ is an exacting requirement—strictly
speaking the EMH is false.
One of the strongest hypotheses in the whole of the social
sciences—in spirit the EMH is profoundly true.
Science concerns seeking the best hypothesis—the EMH is
the best current hypothesis.



Market Predictability

Due to risk aversion, investors require a small positive expected
return in risky markets. In long-only markets—like a stock
market—this implies a positive upward drift. In symmetric markets
which traders are as likely to be long as they are short, like futures
and foreign exchange markets, the implication is that one would
expect the price to be predictable to some degree. Government
intervention in foreign exchange markets may provide a positive
sum game for other participants in the short-term (LeBaron, 1999).

Market Beat market? Reason

Foreign exchange hard government intervention
Futures harder
Stock hardest positive sum game



Investment Newsletters

Experiment to determine market efficiency
Analysis of the Forbes/Hulbert investment letter survey
31 May 1990 to 31 December 2001
Predominantly US equity focussed
8 purely fundamental newsletters, 2 beat the market
9 purely technical newsletters, none beat the market
Other literature, mixed conclusions



Fund Performance

Reviewed the literature on fund performance
We can gauge market efficiency by identifying persistence in
the returns of fund managers
18 papers found evidence of manager skill, 7 supported
market efficiency
5 papers explicitly mentioned market timing, none of them
found that fund managers were able to time the market
Stock picking is a worthwhile activity—fundamental analysis
works
Market timing is not possible—technical analysis doesn’t work



Non-linearities

There exists empirical evidence that a non-linear process
contributes to the dynamics of market returns (e.g.
Scheinkman and LeBaron (1989)).
Neftci (1991) showed that technical analysis relies on
non-linearities being present.
Park and Irwin (2004) found that, in terms of technical
analysis, non-linear methods work best overall.



Financial Markets Stylised Facts 1

Dependence Autocorrelation in returns is largely insignificant,
except at high frequencies when it becomes negative

Distribution Approximately symmetric, increasingly positive
kurtosis as the time interval decreases and a
power-law or Pareto-like tail

Heterogeneity Non-stationary (clustered volatility)
Non-linearity Non-linearities in mean and (especially) variance

Scaling Markets exhibit non-trivial scaling properties
Volatility Volatility exhibits positive autocorrelation, long-range

dependence of autocorrelation, scaling, has a
non-stationary log-normal distribution and exhibits
non-linearities



Financial Markets Stylised Facts 2

Volume Distribution decays as a power law, also calendar
effects

Calendar effects Intraday effects exist, the weekend effect seems to
have all but disappeared, intramonth effects have
been found in most countries, the January effect has
halved, and holiday effects exist in some countries

Long memory About 50 per cent of the articles analysing market
returns concluded that they exhibit long memory, and
about 80 per cent of those analysing market volatility
concluded that it exhibits long memory

Chaos There is little evidence of low-dimensional chaos in
financial markets



Red Herrings

Early claims made for the following turned out to be largely
unfounded as higher-frequency data became available:

stable distributions
long memory in returns
low-dimensional chaos



Model Selection

Model selection is the task of choosing a model with the correct
inductive bias. In practice, select a model of optimal complexity for
the given (finite) data.

1 Choose model space — difficult
2 Model selection — difficult

Choose from

m1 = a11x1 + a10
m2 = a22x2 + a21x1 + a20

3 Parameter estimation — easy
Given

m1 = a11x1 + a10
find a11 and a10



Bayesian Model Selection

Finding the most probable model with noisy data was solved
in principle by Harold Jeffreys nearly 80 years ago (Jeffreys,
1939)
Explicitly trades model complexity, as determined by prior
probabilities, against the (probabilistic) fit to the data
Informs how much structure can be justified by the given data
and the assumed model space
Chooses the model with the largest posterior probability
Works with nested or non-nested models
No need for a validation set
No ad hoc penalty term or assumptions (except the prior)
Consistent—if one of the entertained models is true, with
enough data it will be chosen



Bayesian Model Selection

P(model|data) ∝ prior× likelihood

H a hypothesis (or model)
D data

P(H) the prior—subjective
P(D|H) the likelihood—objective
P(H|D) the posterior

P(H|D) ∝ P(H)P(D|H)

Only interested in the relative probability of different hypotheses



Prior

Choosing the model space is a very important first step.
The prior, P(H), is our subjective assessment of how
surprising a model is.
The Bayesian approach makes incorporation of prior
information relatively easy and explicit.
Apply the principle of indifference, and thus a uniform prior,
not to models but to functions (instances of models).



Prior and Complexity

Model Complexity Volume in parameter space prior

a11x1 + a10 simple n2 cn2
a22x2 + a21x1 + a20 complex n3 cn3

n is arbitrary, c is a normalising constant



Likelihood

To compare models of different complexity, it is necessary to
marginalise the parameters.
The marginal likelihood, P(D|H), is the probability of the
data given the model with a random choice of parameters.

Model Complexity Fit to data Likelihood

a11x1 + a10 simple poor large
a22x2 + a21x1 + a20 complex good small



Posterior

The Bayesian approach automatically gives the necessary trade-off
between model complexity and fit to the data.

Model Prior Likelihood Posterior

Simple small large ?
Complex large small ?



Pedagogical Example: Data

Dow Jones Industrial Average
Daily data
Log returns
Source: Yahoo Finance

Data set Start End No. data points

Training 3 Jan 2000 31 Dec 2009 2515
Test 4 Jan 2010 19 April 2018 2088



Model Inputs

5 orthogonal potential inputs, xn, and a target, y
pn is closing price n days in the future

x1 = log(p0/p−1)
x2 = log(p−1/p−5)
x3 = log(p−5/p−10)
x4 = log(p−10/p−20)
x5 = log(p−20/p−40)
y = log(p1/p0)



Model Space

Models are nested, but need not be

m1 = a11x1 + a10
m2 = a22x2 + a21x1 + a20
m3 = a33x3 + a32x2 + a31x1 + a30
m4 = a44x4 + a43x3 + a42x2 + a41x1 + a40
m5 = a55x5 + a54x4 + a53x3 + a52x2 + a51x1 + a50



Volume of Parameter Space

Model No. params Volume

m1 2 102
m2 3 103
m3 4 104
m4 5 105
m5 6 106

The choice of 10 is arbitrary



Priors

Tobler’s first law of geography informs us that ‘everything is
related to everything else, but near things are more related
than distant things’ (Tobler, 1970).
Autocorrelation in market returns is largely insignificant, but
Campbell, Lo, and Mackinlay (1996) found that
autocorrelations of daily stock index returns was positive.



Model Priors

Priors determined according to complexity and significance of
one-day lag

P(m1) = c1 × 112 × 0.6 = 0.000540
P(m2) = c1 × 113 × 0.1 = 0.000900
P(m3) = c1 × 114 × 0.1 = 0.008996
P(m4) = c1 × 115 × 0.1 = 0.089960
P(m5) = c1 × 116 × 0.1 = 0.899604

c1 is a normalising constant



Bayesian Information Criterion (BIC)

BIC is easy to calculate and enables us to approximate the
marginal likelihood.

n = number of data points
k = number of free parameters
RSS is the residual sum of squares

BIC = n log(RSS/n) + k log(n)
(marginal) likelihood ∝ e−0.5BIC



Model Likelihoods

Model n k RSS BIC Likelihood

m1 2515 2 0.432518 -21784.8 0.928762
m2 2515 3 0.432061 -21779.6 0.069811
m3 2515 4 0.432061 -21771.8 0.001395
m4 2515 5 0.432029 -21764.1 0.000030
m5 2515 6 0.431846 -21757.4 0.000001



Model Posteriors

P(model|data) ∝ prior× likelihood

P(m1|D) = c2 × 0.000540× 0.928762 = 0.863823
P(m2|D) = c2 × 0.000900× 0.069811 = 0.108217
P(m3|D) = c2 × 0.008996× 0.001395 = 0.021630
P(m4|D) = c2 × 0.089960× 0.000030 = 0.004722
P(m5|D) = c2 × 0.899604× 0.000001 = 0.001607

c2 is a normalising constant



Bayesian Model Averaging

The goal is to make as accurate predictions as possible about
future data.
It is optimal to take an average over all models, with each
model’s prediction weighted by its posterior probability.



Out-of-Sample Results
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Conclusions

Science is essentially applied Bayesian analysis.
Bayesian analysis formalises the fact that a surprising result
requires more evidence.
Machine learning can be viewed as an attempt to automate
‘doing science’.
Everyone should be a Bayesian (willing to put a probability on
a hypothesis).
Use domain knowledge to infer an appropriate bias.
Prediction using Bayesian model averaging beats the best
model.
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